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Abstract

Methods for constructing high-risk zones, which can be used in situations where a spatial
point pattern has been observed incompletely, are introduced and evaluated with regard to
unexploded bombs in federal properties in Germany. Unexploded bombs from the Second
World War represent a serious problem in Germany. It is desirable to search high-risk
zones for unexploded bombs, but this causes high costs, so the search is usually restricted
to carefully selected areas. If suitable aerial pictures of the area in question exist, statistical
methods can be used to determine such zones by considering patterns of exploded bombs as
realisations of spatial point processes. The patterns analysed in this thesis were provided by
Oberfinanzdirektion Niedersachsen, which supports the removal of unexploded ordnance in
federal properties in Germany. They were derived from aerial pictures taken by the Allies
during and after World War II.

The main task consists of finding as small regions as possible containing as many un-
exploded bombs as possible. In this thesis, an approach based on the intensity function
of the process is introduced: The high-risk zones consist of those parts of the observation
window where the estimated intensity is largest, i.e. the estimated intensity function ex-
ceeds a cut-off value c. The cut-off value can be derived from the risk associated with the
high-risk zone. This risk is defined as the probability that there are unexploded bombs
outside the zone.

A competing approach for determining high-risk zones consists in using the union of
discs around all exploded bombs as high-risk zone. The radius is chosen as a high quantile
of the nearest-neighbour distance of the point pattern. In an evaluation procedure, both
methods yield comparably good results, but the theoretical properties of the intensity-based
high-risk zones are considerably better.

A further goal is to perform a risk assessment of the investigated area by estimating the
probability that there are unexploded bombs outside the high-risk zone. This is especially
important as the estimation of the intensity function is a crucial issue for the intensity-based
method, so the risk cannot be determined exactly in advance. A procedure to calculate the
risk is introduced. By using a bootstrap correction, it is possible to decide on acceptable
risks and find the optimal, i.e. smallest, high-risk zone for a fixed probability that not all
unexploded bombs are located inside the high-risk zone.

The consequences of clustering are investigated in a sensitivity analysis by exploiting the
procedure for calculating the risk. Furthermore, different types of models which account
for clustering are fitted to the data, classical cluster models as well as a mixture of bivariate
normal distributions.





Zusammenfassung

Methoden zur Konstruktion von Risikozonen, die verwendet werden können, wenn
ein räumliches Punktmuster unvollständig beobachtet wurde, werden am Beispiel
von Blindgängern auf Bundesliegenschaften in Deutschland eingeführt und evaluiert.
Blindgänger aus dem Zweiten Weltkrieg stellen in Deutschland ein schwerwiegendes Prob-
lem dar. Es ist daher wünschenswert, Risikozonen nach Blindgängern abzusuchen. Da dies
jedoch hohe Kosten verursacht, beschränkt sich die Suche normalerweise auf sorgfältig aus-
gewählte Gebiete. Falls für das fragliche Gebiet geeignete Luftbilder existieren, können zur
Bestimmung solcher Zonen statistische Methoden angewandt werden, indem das Muster der
detonierten Bomben als Realisation eines räumlichen Punktprozesses betrachtet wird. Die
in dieser Arbeit analysierten Muster wurden von der Oberfinanzdirektion Niedersachsen
zur Verfügung gestellt, die die Kampfmittelräumung auf deutschen Bundesliegenschaften
unterstützt. Sie wurden aus Luftbildern gewonnen, die die Alliierten während und nach
dem Zweiten Weltkrieg aufgenommen haben.

Das primäre Ziel besteht darin, möglichst kleine Regionen zu finden, die möglichst viele
Blindgänger enthalten. In dieser Arbeit wird ein Ansatz vorgestellt, der auf der Inten-
sitätsfunktion des Prozesses basiert: Die Risikozonen bestehen aus denjenigen Teilen des
Beobachtungsfensters, in denen die geschätzte Intensität am höchsten ist, d.h. in der die
geschätzte Intensitätsfunktion einen Cutoff-Wert c überschreitet. Der Cutoff-Wert kann
vom Restrisiko der entsprechenden Risikozone abgeleitet werden.

Ein konkurrierender Ansatz zur Bestimmung von Risikozonen besteht darin, die Vereini-
gung aller Kreisscheiben um die detonierten Bomben herum als Risikozone zu definieren.
Der Radius ergibt sich als hohes Quantil des Nächste-Nachbarn-Abstandes des Punkt-
musters. Bei der Evaluation liefern beide Methoden ähnlich gute Ergebnisse, jedoch sind
die theoretischen Eigenschaften der intensitätsbasierten Risikozonen deutlich besser.

Ein weiteres Ziel ist eine Risikoabschätzung für das untersuchte Gebiet, wofür die
Wahrscheinlichkeit für Blindgänger außerhalb der Risikozone geschätzt wird. Dies ist ins-
besondere deswegen wichtig, weil sich die Schätzung der Intensität als kritischer Punkt
der intensitätsbasierten Methode erwiesen hat und das Risiko im Voraus nicht exakt fest-
gelegt werden kann. Es wird ein Verfahren zur Risikobestimmung vorgestellt. Mit Hilfe
einer Bootstrap-Korrektur ist es möglich, das akzeptable Risiko festzulegen und die op-
timale (d.h. kleinste) Risikozone für eine vorgegebene Wahrscheinlichkeit, dass nicht alle
Blindgänger in der Risikozone liegen, zu finden.

Die Auswirkungen von Clustering werden in einer Sensitivitätsanalyse untersucht, wozu
das Verfahren zur Risikobestimmung verwendet wird. Darüber hinaus werden verschiedene
Arten von Clustermodellen an die Daten angepasst, sowohl klassische Clustermodelle als
auch Mischungen von bivariaten Normalverteilungen.
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1. Background and motivation

High-risk zones are relevant in all situations which can be characterized as follows: Some
kind of event is observed in random locations, but not all locations are known and one
would like to find a region where the unobserved events will be discovered with a high
probability. Such situations can arise in a variety of applications, such as epidemiology
(e.g. if not all cases of a certain type of infectious disease are reported to the authority in
charge) or ecology (e.g. for locations of rare plants which are difficult to detect). The focus
in this thesis is on one specific application, unexploded World War II bombs.

Even more than 65 years after the end of the Second World War, unexploded bombs still
represent a serious problem in Germany. Their clearance usually requires the evacuation
of houses and the closing of roads and railway lines. As they are often accidentally found
during construction work, these actions have to be taken quickly and often at times which
are especially inconvenient. Even worse, unintended detonations have resulted in severe
accidents in several cases.

To avoid accidents and render evacuations more foreseeable, it is desirable to search
high-risk areas for unexploded bombs before any construction work starts. Depending
on several characteristics of the subsoil, the search alone–without clearance or possible
reconstruction–costs between 0.20 and 20 e per m2, so it must be restricted to carefully
selected areas.

During and after the Second World War, the Allies took aerial pictures of regions they
had bombed. An example is given in Figure 1.1. Nowadays, experts analyse these aerial
pictures and derive the locations of bomb craters. In some cases, smaller structures in the
aerial pictures, which are difficult to detect, indicate that a bomb may have thuded in this
place, but did not detonate. However, this does not necessarily mean that an unexploded
bomb is located in this position, as such findings from the aerial pictures are rather vague
and it is often impossible to retrace where unexploded ordnance was removed during and
in the first years after World War II.

If suitable aerial pictures of the area in question exist, the locations of bomb craters
can be used to determine high-risk zones for unexploded bombs. Note that this is usually
not possible for properties situated in cities because the bomb craters are mostly covered
by ruins of houses and therefore cannot be discerned in the pictures. The high-risk zones
determined on the basis of the bomb craters are an important step in deciding where to
search for unexploded bombs. Additionally, other aspects such as historical data from
archives are also considered before the final decision is taken.

Up to now, high-risk zones have been defined in a way where only very little informa-
tion from the data is used, namely the coordinates of every single observation, but no
characteristics of the pattern in general.



2 1. Background and motivation

Figure 1.1.: Example of an aerial picture showing bomb craters (source: National Archive - Aerial Photo,
Sortie 34-3658, Date 24.03.1945 (WW II Europe)).

Therefore, Oberfinanzdirektion Niedersachsen (OFD), which supports the removal of un-
exploded ordnance in federal properties in Germany, and Mull und Partner Ingenieurge-
sellschaft, who are experts in the analysis of aerial pictures, searched for more sophisticated
approaches. In a cooperation project with the Statistical Consulting Unit (Statistisches
Beratungslabor), Department of Statistics, Ludwig-Maximilians-Universität München, the
task of evaluating existing methods and developing a novel approach was addressed. A
further aim was to perform a risk assessment of the investigated areas, e.g. by estimating
the probability that there are unexploded bombs outside the high-risk zone. The final goal
of the cooperation was to develop a procedure which can be applied automatically by users
who are not experts in statistics. The cooperation project started in May 2009 and was
funded by Oberfinanzdirektion Niedersachsen.

Examples of the data are presented in Figure 1.2. The georeferenced locations of the
bomb craters have been provided by Mull und Partner. As all information is derived from
the aerial pictures, no data are available about the locations of unexploded bombs that
have been found for the specific areas of interest. Example A comprises 443 observations of
bomb craters in an area of approximately 400 ha. Example B consists of 104 observations
in an area of approximately 350 ha. The bomb craters are mainly located in the southern
part of the property. The 1369 observations of Example C are scattered over large parts
of the property with an area of 334 ha. Example D consists of 451 observations on 52 ha.
They seem to be more dense in the south of the property. The 152 bomb craters of
Example E are concentrated on a rather small part of the property, which has an area of
239 ha. Example F comprises 1706 observations on 504 ha. Most of them are located in
the north-east of the property.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 1.2.: Properties to be cleared: The solid lines represent the border of the areas for which data are
available, the points illustrate the locations of bomb craters.



4 1. Background and motivation

The properties to be cleared typically had military importance during war (i.e. barracks,
airfields, military training areas) or were important from a strategic or economic point of
view (i.e. rivers, floodgates, roads and industrial plants). Since detailed information on
specific premise type and location could facilitate the identification of the property and
hence have an economic impact, no further information other than relative coordinates on
the specific property was provided. In general, it is not justified to assume several targets
in a property. In some cases, like for Example B, the target of the attack even seems to be
situated outside the property to be cleared.

The probability of non-explosion of every bomb can vary depending for example on the
subsoil and the year of the attack. A well-established reference value is 0.1. In some
cases, it is possible to estimate the probability of non-explosion for a given property from
historical records. It is usually assumed to be constant on the whole property, as there is
little data from which more specific assumptions could be derived.

The novel approach for constructing high-risk zones consists in interpreting the observed
pattern of bomb craters as a realisation of a spatial point process. This point of view is
widespread in the analysis of the locations of lightning strikes (Schabenberger and Got-
way, 2005) or earthquakes (Vere-Jones, 1970; Choi and Hall, 1999). McDonald and Small
(2006, 2009) used spatial point process methodology for analysing patterns of unexploded
ordnance at former air force bombing ranges. Neyman and Scott (1972) mention pat-
terns resulting from bombing as an example for a special type of spatial point process (see
Section 2.5 for Neyman-Scott processes). These point process models had been used to
optimise the formation bombing strategy for clearing land mines from the landing beaches
in Normandy during World War II.

Interpreting the observed bomb crater patterns as realisations of spatial point processes
provides a rich methodology to analyse the patterns and develop a construction method
for high-risk zones: Various point process characteristics can be considered to investigate
the properties of the observed patterns. In particular, the intensity function serves as basis
for high-risk zones.

This thesis is organised as follows: Chapter 2 procures selected notation and properties
of spatial point processes. The properties of the six real-data examples are investigated
in an exploratory analysis via functional summary characteristics in Chapter 3 in order to
find an appropriate model for the data. In Chapter 4, three methods for constructing high-
risk zones are presented: The traditional method, the quantile-based method, which is not
entirely new, but based on the considerations of Mull und Partner, and–as a completely
novel approach–the intensity-based method. The behaviour of the construction methods
is investigated in Chapter 5, which also contains a model check and a comparison of the
theoretical properties of intensity-based and quantile-based high-risk zones. The chapter
finishes with a recommendation for the intensity-based method. In Chapter 6, the risk
associated with an intensity-based high-risk zone is assessed. As this risk does not reliably
equal the parameter which is intended to specify it, a correction method is proposed. The
consequences of spatial clustering are investigated in Chapter 7. A sensitivity analysis is
performed and different types of models which account for clustering are fitted to the data.
The R package highriskzone comprising an implementation of the main methods of this
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thesis is introduced in Chapter 8. Finally, a summary of the most important results and a
review of open research questions is given in Chapter 9.

All analyses were performed by using the statistical software R (R Development Core
Team, 2012). In particular, the R package spatstat (Baddeley and Turner, 2005, 2006)
for the analysis of spatial point patterns was employed.

Parts of Chapters 3 to 7 have been published in an article in the Journal of the Royal
Statistical Society (Series C) (Mahling et al., 2013). This article contains contributions by
Michael Höhle and Helmut Küchenhoff. Most of the ideas are my own. I performed all
analyses and wrote the article. Helmut Küchenhoff and Michael Höhle commented on the
manuscript.

The R package highriskzone which is introduced in Chapter 8 was created by Heidi
Seibold on the basis of my implementation of the methods for constructing and evaluating
high-risk zones. The package is the major part of Heidi Seibold’s bachelor thesis (Seibold,
2012), which was supervised by Helmut Küchenhoff and me jointly.



6 1. Background and motivation



2. Spatial point processes

In this chapter, much of the notation that will be needed later on is introduced, as well
as the most important concepts regarding spatial point processes. These aspects are dis-
cussed in a variety of books, such as Illian et al. (2008); Møller and Waagepetersen (2003);
Schabenberger and Gotway (2005); Diggle (2003); Daley and Vere-Jones (1988); Cressie
(1993); Gelfand et al. (2010); Ripley (1981, 1988). The history of the theory of point
processes in one dimension is summarized in Daley and Vere-Jones (1988).

A particularity of spatial point patterns is that simulation is an important part of the
analysis as many important characteristics cannot be determined explicitly, at least not for
more complex models. Therefore, Monte Carlo tests as advocated by Diggle (1983, page 7)
will frequently be used in later chapters.

Many parts of this chapter are essentially based on Illian et al. (2008), especially on
Sections 1.5 and 1.6, 2.1 to 2.4, 3.4 and 6.1 to 6.4.

2.1. Introduction to spatial point processes

2.1.1. Definition and basic properties

Spatial point processes are “stochastic models of irregular point patterns” (Illian et al.,
2008, page 23). A spatial point process X = {x1,x2, . . .} with xi ∈ Rd is a finite or
infinite random set. The notation implies that all points are different and do not coincide
(assumption of simplicity). A point pattern X is a realisation of the point process X. Note
that only point processes on the plane will be considered in what follows, i.e. d = 2.

Random points in X will be called ‘events’ (alternatively, ‘points’ or ‘sites’), whereas
arbitrary points in Rd, which may be in X or not, will be called ‘locations’ or ‘positions’.

Møller and Waagepetersen (2003) give a more formal definition of point processes taking
into account the measure theoretical background.

Counting measure

Let W ⊆ Rd be the observation window of the spatial point process X, i.e. the area for
which data are available. The area of a set B ⊆ W is denoted by ν(B).

The counting measure NX(B) denotes the random number of points in a Borel set B ⊆
Rd. To keep the notation simple, the index X will usually be omitted. N is locally finite,
i.e. N(B) <∞ ∀ bounded sets B. For disjoint sets B1 and B2,

N(B1 ∪ B2) = N(B1) +N(B2)
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holds (property of additivity).

Distributions

Every point process can be described by infinitely many random variables and their distri-
butions. The most important of these are the number distributions

P (N(B) = n) and P (N(B1) = n1, . . . , N(Bk) = nk)

and the void probabilities
P (N(B) = 0).

2.1.2. Intensity

Intensity measure and intensity function

The intensity measure ΛX(B) equals the expected number of events in B, E{NX(B)}, and
the intensity function λX(s), which is defined via

ΛX(B) =

∫
B
λX(x)dx,

represents the probability of an event in an infinitesimal disc centered at a given location
s ∈ W . The intensity function exists under continuity conditions (for example, the points
may not be arranged on a lattice). It is proportional to the point density around the
location s.

Papangelou conditional intensity

The Papangelou conditional intensity λ(s|X ) is motivated as follows: The conditional
probability for a point of X in an infinitesimal sphere containing the deterministic location
s, given the realisation X , a point pattern, of X outside the sphere is λ(s|X )ds. Note that
E(λ(s|X)) = λ(s).

Point density distribution function

The point density distribution function G(t) describes the frequency of values of the inten-
sity function:

G(t) =
ν(Wt)

ν(W )
,

where ν(W ) is the area of the observation window and Wt = {s ∈ W : λ(s) ≤ t}.
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Campbell theorem

For non-negative functions f(x), the expected value of point process sums

Sf = f(x1) + f(x2) + . . . =
∑
(i)

f(xi) =
∑
x∈X

f(x) =

∫
f(x)N(dx)

can be computed as follows:

E(Sf ) = E

(∑
x∈X

f(x)

)
=

∫
f(x)λ(x)dx.

2.1.3. Moments

Variance and Covariance

V ar(N(B)) = E
[
(N(B)− Λ(B))2

]
= E

[
(N(B))2

]
− Λ(B)2

Cov(N(B1), N(B2)) = E [(N(B1)− Λ(B1)) · (N(B2)− Λ(B2))]

Moment measure

The kth-order moment measure µ(k) is defined by∫
Rnd

f(x1, . . . ,xn)µ(n)(d(x1, . . . ,xn)) = E

( ∑
x1,...,xn∈X

f(x1, . . . ,xn)

)
,

where f(x1, . . . ,xn) is any non-negative measurable function on Rnd. It expresses expected
values involving the counting measure:

µ(k)(B1 × . . .× Bk) = E(N(B1) · · ·N(Bk)) and µ(k)(Bk) = E(N(B)k)

In particular, it represents the kth moment of the real-valued random variable N(B):

µ(1)(B) = E(N(B)) = Λ(B) and µ(2)(B1 × B2) = E(N(B1) ·N(B2)), so

V ar(N(B)) = µ(2)(B × B)− (Λ(B))2 and

Cov(N(B1), N(B2)) = E [N(B1) ·N(B2)]−E(N(B1))·E(N(B2)) = µ(2)(B1×B2)−Λ(B1)·Λ(B2).
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Factorial moment measure

The kth-order factorial moment measure α(k) is defined by∫
Rnd

f(x1, . . . ,xk)α
(k)(d(x1, . . . ,xk)) = E

( 6=∑
x1,...,xk∈X

f(x1, . . . ,xk)

)
.

In contrast to the kth-order moment measure, only all k-tuples of distinct points in X are
considered. If B1, . . . ,Bk are pairwise disjoint:

µ(k)(B1 × . . .× Bk) = α(k)(B1 × . . .× Bk)

An important relation is obtained for k = 2:

µ(2)(B1 × B2) = Λ(B1 ∩ B2) + α(2)(B1 × B2)

The kth-order factorial moment of a real-valued random variable N(B) is α(k)(Bk):

α(k)(Bk) = E [N(B) · (N(B)− 1) · · · (N(B)− n+ 1)]

Product density

The“frequency of possible configurations of k points”(Illian et al., 2008, page 32) is reflected
by the product density ρ(k). Let b1, . . . , bk be pairwise disjoint discs with centres x1, . . . ,xk
and infinitesimal areas (or volumes) dV1, . . . , dVk. The probability that there is a point of
X in each of the discs b1, . . . , bk is

ρ(k)(x1, . . . ,xk)dV1, . . . , dVk.

The product density is defined if continuity properties are satisfied for α(k), then

α(k)(B1 × . . .× Bk) =

∫
B1
· · ·
∫
Bk
ρ(k)(x1, . . . ,xk)dx1 · · · dxk.

It coincides with λ(x) for k = 1. If ρ(2)(x1,x2) depends only on the distance r of x1 and
x2, the simplified notation ρ(r) is used.

2.1.4. Stationarity and isotropy

Consider a point process X = {x1,x2, . . .} and the translated point process

Xy = {x1 + y,x2 + y, . . .}

which is obtained by shifting all points of the process X by the same vector y. A point
process X is stationary if X and Xy have the same distribution for all translations y, i.e.



2.1 Introduction to spatial point processes 11

P (NX(B1) = n1, . . . , NX(Bk) = nk) = P (NXy(B1) = n1, . . . , NXy(Bk) = nk).

Such processes are also called homogeneous. The intensity measure of a stationary point
process can be written in a simple form:

Λ(B) = λν(B)

A point process X is isotropic if its distributional properties are not affected by rotations
around the origin, i.e. if X and the rotated point process RαX have the same distribution
for all angles α.
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2.2. Complete spatial randomness: The Poisson point
process

The Poisson point process or, more specifically, the homogeneous Poisson point process,
is the most important point process model. It represents the case of complete spatial
randomness and is often used as a null model which does not have any systematic structure.
In addition, it can be used as a starting point for the construction of more complex point
process models. Another important property is that many summary characteristics can be
computed explicitly for this reference model (cf. Section 3).
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Figure 2.1.: Simulated Poisson process.

The homogeneous Poisson point process is defined as follows:

• The number of points in any bounded set B follows a Poisson distribution:
N(B) ∼ Po(λν(B)).

• The numbers of points of X in k disjoint sets are independent for arbitrary k (property
of independent scattering).

A simulated example of a Poisson point process on a unit square is depicted in Figure 2.1.
Some points are very close to the border of the unit square. There are points which are
located close to their neighbours and other points which are located quite far away from
them.

The homogeneous Poisson point process is stationary and isotropic. Its intensity λ is
constant and describes the mean number of point in a unit square. For known intensity, all
types of distributions of the process can be determined. In particular, the one-dimensional
distributions follow from the Poisson distribution of the point counts:



2.2 Complete spatial randomness: The Poisson point process 13

P (N(B) = n) =
λn(ν(B))n

n!
exp(−λν(B))

A closely related model (which, however, does not exactly express complete spatial ran-
domness) is the binomial point process. Here, the number n of points in W is fixed. The
points x1, . . . , xn are uniformly and independently distributed in the bounded observation
window.

The number of points in B ⊂ W follows a binomial distribution:

P (N(B) = k) =

(
n

k

)
pk(1− p)n−k with p =

ν(B)

ν(W )
for k = 0, . . . , n.

As the total number of points in W is fixed, the numbers of points in different subsets of W
are not independent, but there is spatial correlation. This is the reason why the binomial
point process–unlike the Poisson point process–is not a perfect model for complete spatial
randomness. However, it can be shown that conditioning a Poisson process on a fixed
number of points yields a binomial point process.

It is relatively easy to simulate a binomial point processes, especially if the observation
window is rectangular. In this case, both the x and y coordinate for each of the n points
are drawn from a continuous uniform distribution. If the shape of the observation window
is more complicated, a binomial process can be simulated by using rejection sampling:
Points are simulated in a rectangle containing the observation window W and are rejected
if they are located outside W . In addition or as an alternative approach, the observation
window can by approximated by a union of disjoint squares. For more details, see Illian
et al. (2008, pages 64/65).

The simulation procedure for binomial point process can be made use of for simulating
Poisson point processes. As a first step, a Poisson random number is drawn for the total
number of points in the observation window. The second step consists in simulating a
binomial point process with the specified number of points.
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2.3. Clustering and regularity

A possible deviation from complete spatial randomness consists in interaction between the
points. Two types of interaction are distinguished: The points can either repulse or attract
each other. Repulsion leads to regular patterns. Sometimes the term inhibition is used
instead of regularity. The distance from an arbitrary point to its nearest neighbour is
typically large, the distance from an arbitrary location in the observation window to the
nearest point of the process is roughly the same. A simulated example of such a regular
pattern is depicted in Figure 2.2(a), next to a simulated example of a Poisson process in
Figure 2.2(b).
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(a) regular process

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Poisson process
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(c) clustered process

Figure 2.2.: Simulated examples of a regular process, a Poisson process and a clustered process.

The opposite type of interaction between points, attraction, yields clustered or aggregated
patterns. A simulated example (a realisation of the so-called Thomas process) is shown
in Figure 2.2(c). Here, the distance from an arbitrary point to its nearest neighbour is
typically small, whereas the distance between an arbitrary location in the observation
window and the nearest point of the process is typically large.

As we will see, regular patterns are not relevant in the bomb crater application and
will therefore play a minor role in the following parts of this thesis. Models for clustered
patterns are introduced in Section 2.5.2.
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2.4. Inhomogeneity

Another possible deviation from complete spatial randomness is varying expectation for
the point counts. The result are non-stationary processes, which are usually called inho-
mogeneous. An important model for such patterns is the inhomogeneous Poisson point
process. It takes the varying expectation into account by means of a spatially varying in-
tensity function λ(s). Two simulated examples of inhomogeneous Poisson point processes
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(a) inhomogeneous Poisson process (b) intensity function
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(c) inhomogeneous Poisson process (d) intensity function

Figure 2.3.: Simulated examples of inhomogeneous Poisson processes and their intensity functions.

are depicted in Figure 2.3, as well as the corresponding intensity functions. Inhomogeneous
Poisson point processes will be discussed in detail in Section 2.5.1.

As the intensity function of the inhomogeneous Poisson point process varies in space, the
resulting patterns may resemble clustered patterns although the reason for a higher point
density in some areas is completely different: It results from a higher intensity in case of the
inhomogeneous Poisson process, whereas it is induced by (mutual) attraction of the points
for the clustered process. Figure 2.4 illustrates the possible resemblance of the resulting
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(a) inhomogeneous Poisson pro-
cess

(b) intensity function of the inhomo-
geneous Poisson process
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(c) Thomas process
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(d) inhomogeneous Poisson pro-
cess

(e) intensity function of the inhomo-
geneous Poisson process
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(f) Thomas process

Figure 2.4.: Simulated examples of inhomogeneous Poisson processes (with their intensity function) and
of Thomas processes.

patterns for two simulated examples. The inhomogeneous Poisson processes have been sim-
ulated from the underlying intensity functions in Figures 2.4(b) and 2.4(e). The clustered
patterns have been simulated as a so-called Thomas process, a popular model for clus-
tered processes, which will be introduced in Section 2.5.2. Moreover, the relation between
clustered and inhomogeneous patterns will be discussed in more detail in Section 2.5.3.
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2.5. Spatial point process models

In this section, some of the most important point process models are introduced. A useful
concept–which is not related to a specific model, but will be applied in Section 4 and can
also be used for simulating inhomogeneous Poisson point processes and Cox processes–is
thinning of point processes:

The random deletion of points in the process X yields a thinned process Y ⊂ X. There
are three ways to delete points:

• p-thinning: Every point is deleted with probability 1 − p independently of all other
points and the specific location. The parameter p is called retention probability. In
a simulation approach, this kind of thinning can by performed by drawing Bernoulli
random numbers.

• p(s)-thinning: The retention probability is not fixed, but given by a deterministic
function p(s) with 0 ≤ p(s) ≤ 1. Thus, the retention probability depends on the
location.

• P (s)-thinning: p(s) is random and based on a random field P (s).

More general approaches include thinning depending on the configuration of the initial
process X. As these are mainly relevant for regular patterns, they are not discussed
further.

The following properties will be used later on:

• If λX(s) is the intensity function of the initial process X and p(s)-thinning is applied,
the intensity function of the thinned process Y is λY (s) = p(s)λX(s).

• If the initial process X is an inhomogeneous Poisson process, the p(s)-thinned process
Y is an inhomogeneous Poisson process as well, and so is Z = X\Y . Y and Z are
independent (Møller and Waagepetersen, 2003, page 23).

2.5.1. Inhomogeneous Poisson point process

An important model for (finite) non-stationary processes is the inhomogeneous Poisson
point process, a generalisation of the homogeneous Poisson point process introduced in
Section 2.2. The inhomogeneous Poisson point process is defined as follows:

• The number of points in any bounded set B follows a Poisson distribution:

N(B) ∼ Po

(∫
B
λ(x)dx

)
• The numbers of points of X in k disjoint sets are independent for arbitrary k (property

of independent scattering).
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While the property of independent scattering remains unchanged compared to the homo-
geneous Poisson point process, the formerly constant intensity λ is replaced by an intensity
function λ(s) whose values depend on the location s ∈ W .

Some of the properties of homogeneous Poisson point processes can be generalised for
the inhomogeneous case. In particular, the one-dimensional distributions still follow from
the Poisson distribution of the point counts:

P (N(B) = n) =
(Λ(B))n

n!
exp(−Λ(B)),

where Λ(B) =
∫
B λ(x)dx.

The assumption of an inhomogeneous Poisson point process implies that beyond spatial
variation in the intensity function, there is no stochastic dependence between observations.

An inhomogeneous Poisson point process Y with intensity function λY (s) can be simu-
lated by applying p(s)-thinning to a homogeneous Poisson point process X with intensity
λX , where

λX = max
s
λY (s) and p(s) =

λY (s)

λX
.

2.5.2. Cluster processes

The fundamental idea of cluster processes is that every point of a ‘parent process’ is replaced
by a cluster of ‘daughter points’. The union of these cluster points is the cluster process,
whereas the parent points are usually unobserved (and often fictitious) and describe the
cluster centres. They are usually not part of the cluster process.

A Poisson cluster processes (Bartlett, 1964; Møller and Waagepetersen, 2007; Illian et al.,
2008) is obtained if the cluster centres form a Poisson process. The Poisson cluster process
consists of the cluster points only (Schabenberger and Gotway, 2005).

Neyman-Scott processes (Neyman and Scott, 1958) are special Poisson cluster processes:
Each cluster centre has a random number of offspring, the cluster points. The number of
cluster points is independent and identically distributed with a discrete probability mass
function. The positions of the cluster points relative to the cluster centres are indepen-
dent and identically distributed according to a bivariate distribution function. Note that
according to the definition of Cressie (1993), the cluster centres of a Neyman-Scott process
may form an inhomogeneous Poisson point process, whereas most other authors postulate
a homogeneous Poisson process (e.g. Stoyan et al. (1995)).

Popular Neyman-Scott processes are the Matérn cluster process (Matérn, 1960) and the
Thomas process (Thomas, 1949): The cluster points of each cluster of a Matérn cluster
process are independently uniformly distributed in a disc of radius R around the cluster
centre. For the Thomas process, the positions of the cluster points relative to the cluster
centres are given by an isotropic normal distribution with parameter σ. They will be
considered in more detail in Section 7.2.

Cluster processes can be simulated in three steps:
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1. The process of cluster centres is generated, e.g. as an (inhomogeneous) Poisson point
process.

2. The number of offspring per cluster is simulated using a discrete distribution, e.g.
the Poisson distribution.

3. The positions of the cluster points relative to the centres are determined using a
bivariate distribution, e.g. a uniform distribution on a disc or a bivariate normal
distribution.

2.5.3. Cox processes

An extension of the Poisson process is the Cox process (Cox, 1955), where the intensity
λ(s) is replaced by a non-negative random field Φ(s), the intensity field. Because of this
second stochastic component, this process is frequently called ‘doubly stochastic process’.
Conditional on Φ, the Cox process is a Poisson process with intensity function Φ. If the
intensity field Φ(s) is stationary, the resulting Cox process is stationary as well, whereas
an inhomogeneous Poisson point process is not.

As the intensity field Φ(s) can take various forms, the class of Cox processes is large.
Some of the most popular examples are the log-Gaussian Cox process (Møller et al., 1998),
where Φ(s) = expZ(s) and Z(s) is a Gaussian random field, the Poisson-gamma random
field Cox process (Ickstadt and Wolpert, 1997; Wolpert and Ickstadt, 1998), the Thomas
process and the Matérn cluster process. The three latter models are examples of shot-
noise Cox processes (see Møller (2003) and–for a generalisation–Møller and Torrisi (2005)).
Other types of Cox processes can be obtained by P (s)-thinning of Poisson processes. The
class of Cox processes also comprises many cluster processes.

In general, a Cox process can be simulated in two steps: First, a realisation of the
random field is generated. The obtained intensity function is then used to simulate an
inhomogeneous Poisson point process.

As conditional on Φ, the Cox process is a Poisson process, inhomogeneous Poisson pro-
cesses and Cox processes cannot be distinguished when only one realisation is available
(Møller and Waagepetersen, 2007). This is a fundamental problem which is not only rele-
vant with respect to Cox processes: As Diggle et al. (2007) stated, there is a “fundamental
ambiguity” between clustering and inhomogeneity: Both mechanisms generate patterns
with aggregation, so they are difficult to distinguish–see also Ripley (1981), who states
that inhomogeneous Poisson processes and cluster processes can “have identical distribu-
tions and so cannot be distinguished by any amount of data”. Bartlett (1964) has shown
that a Neyman-Scott process is identical to a Cox process if the number of offspring follows
a Poisson distribution, so “no method of statistical analysis could discriminate between the
two interpretations”.

Given these problems in theory, Schabenberger and Gotway (2005) recommend to use
the point process model which fits the subject-matter theory best.

In the following chapter, the bomb crater patterns are examined to find out which model
should be used. The subject-matter theory will be considered in Section 3.6.
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3. Properties of the bomb crater point
pattern data

In this chapter, the properties of the observed patterns are investigated in order to find an
appropriate model for the data.

The observation window W of a spatial point process X gives the area for which data are
available. In the simplest case, it is identical to the property of interest (for more complex
settings, see Chapters A and B in the Appendix). The process X now represents the
locations of all bombs, exploded as well as unexploded. However, only a thinned version
Y of the full process X, namely the exploded bombs in form of the bomb craters, has been
observed. It consists of the NY (W ) = nY observations whose coordinates can be derived
from the aerial pictures. The process of unexploded bombs, Z = X\Y , is unobserved, i.e.
its locations are unknown. The probability of non-explosion for every bomb q is assumed to
be homogeneous in W , which means that every x ∈ X is element of Z with probability q,
regardless of its location s ∈ W and independently of the behaviour of the other elements
of X.

To find an appropriate model for the data depicted in Figure 1.2, second-order charac-
teristics such as Ripley’s K-function and the pair correlation function, as well as nearest-
neighbour and empty-space characteristics will be considered. The intensity is a funda-
mental first-order characteristic. The largest average intensity was observed for Example
D (0.00087), the second largest for Example C (0.00041). For Examples B (0.000030) and
E (0.000064), the average intensity was much smaller. An intermediate intensity was ob-
tained for Examples A (0.000108) and F (0.000338). The estimation of intensity functions
varying in space is discussed in Section 4.3.2.

The following explanations are mainly based on Illian et al. (2008), Chapters 1.7, 4.1–4.3
and 4.10. The general use of summary functions for spatial point processes is discussed in
Cressie (1993), Ripley (1981) and Diggle (2003). No numerical summaries such as indices
will be considered, but functional summaries. These contain more information and are
therefore also useful for fitting models.

Summary characteristics can be classified as location-related (like the empty-space distri-
bution function) or point-related, as the nearest-neighbour distribution function or Ripley’s
K-function. For the proper definition of point-related characteristics, Palm distributions
are needed.

Palm characteristics are probabilities or expected values referring to individual points in
the process, for example the expected number of points in a disc of radius r centered at x
(where x is not counted) or the probability that there is at least one further point in such
a disc (Illian et al., 2008, page 177). In the stationary case, it is possible to define these
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characteristics independently of the particular position of the point x. In consequence, the
origin o or a so-called typical point is considered and the characteristics are written as

Po [N(b(o, r)\{o}) > 0]

and
Eo [N(b(o, r)\{o})] .

The exact definitions are

λν(W )Po(X ∈ A) = E

[ ∑
x∈X∩W

1A(X − x)

]
,

where W is a ‘test set’, X ∈ A means that the process X has property A and X −x is the
shifted process, and

λν(W )Eo [S(X)] = E

[ ∑
x∈X∩W

S(X − x)

]
,

where S(X) is a number assigned to X.

Details can be found in Stoyan et al. (1987), Chapter 2.4.3. The main difficulty with
Palm characteristics is that probabilities such as Po(X ∈ A) can be interpreted as a
conditional probability given that there is a point in o, but this conditional probability
cannot be defined in the classical way, as the probability that there is a point in o is zero
for stationary processes.

The Campbell-Mecke formula is a version of the Campbell theorem in which the function
that is considered does not only depend on x, but also on other points of the process X:

E

(∑
x∈X

f(x, X)

)
= λ

∫
Eo [f(x, X−x)] dx = λEo

[∫
f(x, X−x)dx

]
.

Classical summary characteristics are defined for stationary processes. This implies the
assumption that the pattern is infinite and can be continued outside the observation window
in the same way. However, only the points inside the window are known, which results in
edge effects. Illian et al. (2008) summarize edge-correction methods in Chapter 4.2.2. The
most important methods for the following sections can be classified as follows:

• The border method (also called minus sampling) can be illustrated for a situation
where only neighbours within a distance r are relevant, which is the case when the
expected number of points in a disc of radius r centered at the typical point or the
probability that there is a point in this disc is estimated. Then, a possible approach
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is to use only the points whose distance from the boundary ∂W of the observation
window is larger than r. These points are located in

W	r = {s ∈ W : b(s, r) ⊆ W},

where b(s, r) denotes a disc of radius r centered at s. Only the points in W	r, which
is a subset of W , are taken into account for the estimation. The points in W\W	r,
however, are used to determine the correct distances to the nearest neighbours of the
points in W	r or the correct numbers of points inside the given discs.

• A more sophisticated approach is the nearest-neighbour edge-correction: Only those
points are taken into account for estimation whose nearest-neighbour distance d(x) is
shorter than their distance e(x) to the boundary ∂W . A weight 1/ν(W	d(x)), where
W	d(x) = W 	 b(o, d(x)) = {s ∈ W : b(s, d(x)) ⊆ W}, is attached to every point.

• The typical structure of estimators for second-order characteristics consists in double
sums of pairs of points in W . For second-order edge-corrections, pairs of points
(x1,x2) with a large inter-point distance–where both x1 and x2 are located in W–are
attributed large weights. The first type of weights is called stationary or translational :
1/ν(Wx1 ∩ Wx2), where Wx = {z + x : z ∈ W} denotes the translated window.
For the second type of weights, isotropic or rotational edge-correction is obtained:
1/w(x1,x2), where w(x1,x2) is the boundary length in W of b(x1, ||x1−x2||), divided
by the circle perimeter length 2π||x1 − x2||.

The border method was introduced by Ripley (1977). Hanisch (1984) introduced a nearest-
neighbour estimator which uses nearest-neighbour edge-correction.

Ripley (1988, page 32) explains the isotropic correction as follows: Pairs (x1,x2) are
counted k(x1,x2) times, where 1

k(x1,x2)
is the proportion of the perimeter of the circle

∂b(x1, d(x1,x2)) which is in the window (see also Hanisch (1983), Ohser (1983), Ripley
(1976) and Ohser and Stoyan (1981) for second-order edge-corrections).

The problem of spatial censoring and edge correction is discussed in detail in Baddeley
(1999) and Ripley (1988, Chapter 3), who presents corrections for nearest-neighbour meth-
ods and ‘interpoint distance methods’ such as the K-function. Moreover, he gives asymp-
totic variances for edge-corrected estimates and limit theorems for interpoint distances.
Baddeley (1999) distinguishes two types of edge effects, sampling bias (which results if size
and shape of a certain object influence the probability that this object is included in the
sample) and censoring effects (i.e. not the full extent of a geometrical object partially lo-
cated within the window can be observed). Edge effects are especially severe if the window
is small or has a complex shape. Possible strategies for correction include data-dependent
weighting and methodology from survival analysis. Concerning sampling bias, the border
method can be used. Alternatively, ‘real’ edge corrections are proposed, weighted empirical
distributions of distances between points which can be derived from the Campbell-Mecke
formula and are Horvitz-Thompson style estimators (e.g. translation correction and Rip-
ley’s isotropic correction; see Horvitz and Thompson (1952) for Horvitz-Thompson esti-
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mators in general). Concerning censoring effects, the analogy between censoring and edge
effects can be made use of to obtain Kaplan-Meier and Hanisch-type estimators.

The Kaplan-Meier estimator (Baddeley and Gill, 1997) is more efficient than the border
method for the empty-space function and for the nearest-neighbour distance distribution
function. For Ripley’s K-function, however, the Kaplan-Meier estimator is less efficient
than sophisticated edge corrections using weights which are reciprocal to the observation
probability. The Chiu-Stoyan estimator (Chiu and Stoyan, 1998) is based on the nearest-
neighbour estimator proposed by Hanisch (1984). Its adaption to the empty-space function
yields a new estimator which is closely related to the Kaplan-Meier estimator, as Chiu and
Stoyan (1998) have shown.

Illian et al. (2008) recommend to check the assumption of stationarity before applying
the following summary characteristics. Moreover, the window should be adapted (e.g.
the pair-correlation function might exhibit a strange behaviour for large arguments if an
inappropriate window is used). However, summary characteristics can formally be applied
to non-stationary patterns (Illian et al., 2008, page 280). Therefore, the assumption of
stationarity will not be checked, but summary characteristics for inhomogeneous processes
will be applied additionally. As the observation windows have a special meaning for the
bomb crater patterns (they represent the properties to be cleared), they will not be adapted.

Some of the results for Examples A and B have been shown in Mahling et al. (2013).

3.1. Empty-space function

The empty-space function (also called spherical contact distribution function or point-to-
nearest-event distribution function)

Hs(r) = 1− P (N(b(o, r)) = 0)

for r ≥ 0 is a location-related summary characteristic. It is “the distribution of the distance
from an ‘arbitrary’ test location to its nearest neighbour” (Illian et al. (2008), p. 200). It
describes the distribution of the smallest radius for a disc at the origin o to a contact point
in the spatial point process X.

For a homogeneous Poisson point process, the empty-space function is

Hs(r) = 1− exp(−λπr2).

Smaller values suggest clustering, whereas larger values suggest regularity. This is il-
lustrated in Figure 3.1, where estimated empty-space functions are shown for some of
the simulated patterns from Chapter 2. Note that Hs(r) also takes smaller values than
1− exp(−λπr2) for inhomogeneous Poisson processes.

In spatstat, three types of correction are available, namely the border method esti-
mator, the Kaplan-Meier estimator and the Chiu-Stoyan estimator. The Kaplan-Meier
estimator is recommended.
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(b) regular process (Fig. 2.2(a))
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(c) clustered process (Fig. 2.2(c))
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(d) inhomogeneous Poisson pro-
cess (Fig. 2.4(a))

Figure 3.1.: Empty-space function: The solid lines represent the estimated empty-space functions for the
simulated patterns, the dashed lines correspond to the theoretical empty-space functions of a homogeneous
Poisson process.

Two discrete approximations are used: The observation window W is discretized on a
regular lattice and [0, r] is replaced by a large number of values from this interval. Finally,
the estimator is obtained by a distance transform algorithm of image processing, where the
Euclidean metric is discretely approximated (Borgefors, 1986).

The estimated empty-space functions (Kaplan-Meier estimator) for Examples A to F are
depicted in Figure 3.2. For all six examples, the values for the observed pattern are smaller
than the theoretical values for a homogeneous Poisson process, especially for Examples E
and F, whose points are scattered on a small part of the window.
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(d) Example D
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(e) Example E
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(f) Example F

Figure 3.2.: Empty-space function: The solid lines represent the estimated empty-space functions for the
observed patterns, the dashed lines correspond to the theoretical empty-space functions of a homogeneous
Poisson process.
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3.2. Nearest-neighbour distance distribution function

The nearest-neighbour distance distribution function

D(r) = Po(N(b(o, r)\{o}) > 0)

for r ≥ 0 describes the random distance from a typical point to its nearest neighbour and is
a point-related summary characteristic. As only the nearest neighbour is considered, it is
“short-sighted” and cannot describe the behaviour of the process at large distances (Illian
et al., 2008, page 207).

For a homogeneous Poisson point process, the nearest-neighbour distance distribution
function is

D(r) = 1− exp(−λπr2).

Larger values suggest clustering, whereas smaller values suggest regularity. As a conse-
quence,

• D(r) = Hs(r) for a Poisson process,

• D(r) ≤ Hs(r) for a clustered process and

• D(r) ≥ Hs(r) for a regular process.

The estimated nearest-neighbour distribution functions for some of the simulated patterns
from Chapter 2 are shown in Figure 3.3.
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(c) clustered process (Fig. 2.2(c))

Figure 3.3.: Nearest-neighbour distance distribution function: The solid lines represent the estimated
nearest-neighbour distance distribution functions for the simulated patterns, the dashed lines correspond
to the theoretical nearest-neighbour distance distribution functions of a homogeneous Poisson process.

In spatstat, three estimators are implemented: The border estimator, the nearest-
neighbour estimator and the Kaplan-Meier estimator. Estimation is performed based on
histogram counts.
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The estimated nearest-neighbour distance distribution functions (Kaplan-Meier estimator)
for Examples A to F are depicted in Figure 3.4. For all six examples, the values for the
observed pattern are larger than the theoretical values for a homogeneous Poisson process
for most values of r.
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Figure 3.4.: Nearest-neighbour distribution function: The solid lines represent the estimated nearest-
neighbour distribution functions for the observed patterns, the dashed lines correspond to the theoretical
nearest-neighbour distribution functions of a homogeneous Poisson process.
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3.3. J-function

The J-function

J(r) =
1−D(r)

1−Hs(r)
for r ≤ 0 with Hs(r) < 1

has been introduced by Van Lieshout and Baddeley (1996). It “compares the environment
of a typical random point of the process with the environment of a fixed arbitrary point”
in form of the ration of the probabilities that there is no further point within the distance
r of a given point or location. Van Lieshout and Baddeley (1996) have shown that J(r) is
constant for distances r which are larger than the range of spatial interaction for stationary
processes whose Papangelou conditional intensity exists. They have also shown that

• J(r) ≡ 1 for a Poisson process,

• J(r) ≤ 1 for a clustered process and

• J(r) ≥ 1 for a regular process.

The J-function is not invariant under thinning (Van Lieshout and Baddeley, 1996).
Thönnes and Van Lieshout (1999) found in simulations that the J-function is a “compet-

itive alternative” to the nearest-neighbour distance distribution function and the empty-
space function for testing complete spatial randomness. As advantages compared to those,
they name that the J-function can be evaluated explicitly for a larger class of models and
that it measures type, strength and range of spatial interaction.

Bedford and van den Berg (1997) have shown that there are non-Poisson processes with
J(r) ≡ 1. They considered the one-dimensional case and showed that there are even pro-
cesses with J(r) ≡ 1 whose interpoint distances are bounded (and hence not exponentially
distributed).

Baddeley, Kerscher, Schladitz, and Scott (2000) have shown that the J-function is in-
sensitive to edge effects: The uncorrected estimator is approximately unbaised for Poisson
point processes. For testing complete spatial randomness, the uncorrected estimator yields
at least as powerful tests as the corrected estimators.

The estimation of the J-function is difficult, as it is a combination of two characteristics
of different nature (point-related vs. location-related). The denominator is small for large
r, which results in fluctuations of the estimator (Illian et al., 2008, page 213). Van Lieshout
and Baddeley (1996) recommend plugging in estimators of Hs(r) and D(r) obtained by
comparable methods, especially using Kaplan-Meier estimators for both function as these
have the advantage that they are proper distribution functions. As Figure 3.5 shows,
even this procedure may result in questionable estimates, as for the Poisson process from
Figure 2.1, whose estimated J-function is depicted in Figure 3.5(a) and which should be
close to 1, or for the inhomogeneous Poisson process from Figure 2.3(a).

The estimated J-functions (Kaplan-Meier estimator for both nearest-neighbour distance
distribution function and empty-space function) for Examples A to F are depicted in Fig-
ure 3.6. For all six examples, the values for the observed pattern are smaller than the
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Figure 3.5.: J-function: The solid lines represent the estimated J-functions for the simulated patterns, the
dashed lines correspond to the theoretical J-functions of a homogeneous Poisson process.

theoretical values for a homogeneous Poisson process. Only for Examples C and D, a value
larger than 1 is observed for a small value of r. For Example A, the J-function is constant
for r > 210. The range of spatial interaction is about 270 for Example B, 160 for Example
C, 83 for Example D and 82 for Example E. The J-function of Example F is constant for
r > 110, but it is already almost constant from r = 70 on.
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Figure 3.6.: J-function: The solid lines represent the estimated J-functions for the observed patterns, the
dashed lines correspond to the theoretical J-functions of a homogeneous Poisson process.
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3.4. Ripley’s K-function

A well-established tool for investigating homogeneous spatial point patterns is Ripley’s
K-function (Ripley, 1977)

K(r) =
1

λ
Eo(N(b(o, r)\{o})),

defined for r ≥ 0, where λ is the intensity of the stationary process. Thus, multiplied with
λ, the K-function corresponds to the expected number of other points within distance r
from the typical point o. The division by λ is performed to separate out the global point
density and local point density fluctuations (Illian et al. (2008), p. 215).

Ripley (1977) introduces the K-function as follows: “λ2K(t) is the expected number of
ordered pairs of distinct points less than distance t apart with the first point in a given set
of unit area” and “λK(t) is the expected number of further points within t of an arbitrary
point of the process”.

For a Poisson process, K(r) = πr2, larger values are obtained for cluster processes,
smaller values for regular processes. Examples for the simulated patterns from Chapter 2
are shown in Figure 3.7.

As the K-function is a cumulative characteristic, its interpretation is complicated. It is
rather difficult to see for which values of r deviations from the case of complete spatial
randomness are observed.

The K-function is the first second-order characteristic presented in this thesis. Second-
order characteristics for stationary processes can be motivated as follows (Illian et al., 2008,
pages 223–225): The second-order factorial moment measure α(2)(B1×B2) gives the mean
number of pairs x1 6= x2 with x1 ∈ B1 and x2 ∈ B2. If B1 and B2 are disjoint, then

α(2)(B1 × B2) = E [N(B1) ·N(B2)] .

If B1 = B2 = B:

α(2)(B × B) = E [N(B)(N(B)− 1)] = E
[
N(B)2

]
− E [N(B)] .

So V ar(N(B)) can be written as follows:

V ar(N(B)) = α(2)(B × B) + E [N(B)]− (E [N(B)])2 = α(2)(B × B) + λν(B)− (λν(B))2

As Cov(N(B1), N(B2)) can be expressed in terms of α(2) and λ as well, the intensity
and the second-order factorial moment measure completely describe the second-order be-
haviour. Therefore, it is useful to derive simpler expressions for the second-order factorial
moment measure containing the second-order product density ρ and the reduced second-
order moment measure K. It can be shown that

α(2)(B1 × B2) =

∫
B1

∫
B2−x

ρ(h)dhdx
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Figure 3.7.: K-function: The solid lines represent the estimated K-functions for the simulated patterns,
the dashed lines correspond to the theoretical K-functions of a homogeneous Poisson process.

with h = x1 − x2 and

α(2)(B1 × B2) = λ2
∫
B1
K(B2 − x)dx,

where K is the reduced second-order moment measure defined by

λK(B) = Eo(N(B\{o})).

⇒ λ2K(B) =

∫
B
ρ(h)dh

As one can see easily, Ripley’s K-function is K(r) = K(b(o, r)) for r ≥ 0.

The typical second-order characteristics are Ripley’s K-function and the pair correlation
function. The pair correlation function was originally introduced for X-ray experiments of
Max von Laue around 1900, the K-function was introduced by Bartlett (1964) and–in its
modern form–by Ripley (1977) (see Illian et al., 2008, page 226).
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Illian et al. (2008) recommend working with the pair correlation function rather than with
Ripley’s K-function: Ripley’s K-function should be used for very small samples and for
goodness-of-fit tests, the pair correlation function should be used for exploratory analysis.

Baddeley and Silverman (1984) show that the second-order description of a pattern does
not contain all information. They construct a so-called ‘cell process’: The rectangular
observation window is divided in unit squares with random numbers NS of points per cell.
Every cell contains 0, 1 or 10 points with probability 1/10, 8/9 and 1/90, respectively.
They show that the intensity is the same as for a Poisson process with intensity 1 and
that the two processes have identical K-functions. So the K-function is not unique, very
different patterns may have exactly the same K-function.

The K-function is invariant under thinning (Stoyan et al., 1987, page 134). Ripley (1977)
and Ohser (1983) give unbaised estimators.

In spatstat, the K-function is estimated as follows:

K̂(r) =
ν(W )

(n− 1)π

∑
i<j

1(d(i, j) ≤ r) · e(i, j),

where n is the number of points, d(i, j) is the distance between two (ordered) points and
e(i, j) the corresponding edge correction weight. The implemented edge correction methods
are the border method, Ripley’s isotropic correction (which is recommended) and Ohser’s
translation correction, which is slow for complex windows.

The values of the estimated K-functions (with Ripley’s isotropic correction, which is used
following the recommendation although anisotropy cannot be ruled out) clearly exceed the
theoretical values for all six examples (Fig. 3.8), especially for Examples E and F, not so
much for Examples C and D. This may suggest spatial clustering, but the deviation may
also be due to inhomogeneity. Note that even larger values would result if the translation
correction was applied.
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Figure 3.8.: Ripley’s K-function: The solid lines represent the estimated K-functions for the observed
patterns, the dashed lines correspond to the theoretical K-functions of a homogeneous Poisson process.
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In the discussion to Ripley (1977), Julian Besag suggested“a slight modification to K-plots”

and showed a plot of
√

K(r)
π

against r. This resulted in Besag’s L-function (Besag, 1977):

L(r) =

√
K(r)

π
for r ≥ 0.

For a Poisson point process L(r) = r, larger values suggest clustering. Examples for the
simulated patterns from Chapter 2 are shown in Figure 3.9.
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Figure 3.9.: L-function: The solid lines represent the estimated L-functions for the simulated patterns, the
dashed lines correspond to the theoretical L-functions of a homogeneous Poisson process.

The advantages of the L-function are that the interpretation and visualization are easier as
the function is proportional to r. Moreover, the root transformation stabilises fluctuations.

A modified version L∗(r) =
√

K(r)
π
− r of the L-function is somewhat misleading as the

cumulative nature of the function is covered up.
In spatstat, the L-function is estimated by transforming the estimate of the K-function.

Figure 3.10 shows the estimates for Examples A to F obtained via Ripley’s isotropic cor-
rection. The values for the observed patterns exceed the theoretical values.
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Figure 3.10.: Besag’s L-function: The solid lines represent the estimated L-functions for the observed
patterns, the dashed lines correspond to the theoretical L-functions of a homogeneous Poisson process.
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3.5. Pair correlation function

As we have seen, the cumulative nature of the K-function makes its interpretation difficult.
An alternative second-order characteristic which is not cumulative is the pair correlation
function g(r). It is proportional to the derivative of the K-function:

g(r) =
K ′(r)

2πr
for r ≥ 0.

It can be motivated as follows (Illian et al., 2008, page 219): The probability to observe an
event in the infinitesimal disc b(x) with area dx centered on x is λdx. Consider a second
location y with distance r from x. The probability to observe an event in b(x) as well as
in b(y) is

p2(x,y) = ρ(x,y)dxdy,

where ρ(x,y) is the second-order product density.

If this probability only depends on the distance r, but not on the specific location of x
and y, this expression simplifies to

p2(x,y) = g(r)λdxλdy.

The pair correlation function is g(r) = ρ(r)/λ2. In case of complete spatial randomness,
p2(x,y) = λdxλdy, so g(r) ≡ 1. For cluster processes, larger values are obtained, especially
for small radius r. For regular processes, smaller values are obtained for small r. The range
of correlation is the finite distance rcorr with g(r) = 1 for r ≥ rcorr. Examples for some of
the simulated patterns from Chapter 2 are shown in Figure 3.11.

The pair correlation function is invariant under p-thinning (Illian et al., 2008, page 366).

In spatstat, the pair correlation function is estimated as recommended in Stoyan and
Stoyan (1992, 1994): In a first step, the second-order product density ρ(2)(r) is estimated.
The estimate for the pair correlation function is obtained by dividing by an estimate for
λ2. A suitable estimator, which is unbaised for Poisson processes, is λ̂2 = n(n−1)

ν(W )2
(Stoyan

and Stoyan, 1992, page 302).

For the estimation of ρ(2)(r), they use an Epanechnikov kernel kh(·) with support [−h, h],
where h = c /

√
λ, c is a value between 0.1 and 0.2 and λ is a simple estimator for the

intensity (Stoyan and Stoyan, 1992, page 310). In spatstat, c = 0.15 per default. For
cluster processes, Guan (2007) recommends smaller values for h.

If Ripley’s isotropic correction is used, the resulting estimator is

ρ̂R(r) =
1

2πr

n∑
i=1

n∑
j=1,
j 6=i

kh(r − ||xj − xi||)bij
ν(W ||xj−xi||)

,

where W r = {x ∈ W : ∂(b(x, r))∩W 6= ∅} and bij = 2π
αij

, where αij is the sum of all angles

of the arcs in W of a circle with radius ||xj − xi|| centered at xi. If αij = 0, then bij = 0
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Figure 3.11.: Pair correlation function: The solid lines represent the estimated pair correlation functions
for the simulated patterns, the dashed lines correspond to the theoretical pair correlation functions of a
homogeneous Poisson process.

(Illian et al. (2008), p. 229). The translation correction and Ripley’s isotropic correction
are available in spatstat.

Like for the K-function, Ripley’s isotropic correction was applied. Figure 3.12 shows the
estimates for Examples A to F. The values for the observed patterns are larger than 1 even
for large values of the argument r. In part, this may be due to the choice of the observation
window (Examples E and F), but even more to inhomogeneity. For very small values of
r, the estimation is difficult (see Illian et al., 2008, page 235). In particular, large values
may be obtained for r < h. For Examples A, B and E, the pair correlation function takes
indeed large values for small r, whereas these values are smaller than 1 for Example D. The
following values were obtained for h: 14.4 for Example A, 27.3 for Example B and 7.4 for
Example C. For Examples D, E and F, h = 5.1, h = 18.8 and h = 8.2, respectively. This
means that the remarkable shape of ĝ(r) for Examples A, C and D is due to difficulties
with regard to the estimation. Note that larger values would have been obtained with the
translation correction.
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Figure 3.12.: Pair correlation function: The solid lines represent the estimated pair correlation functions
for the observed patterns, the dashed lines correspond to the theoretical pair correlation functions of a
homogeneous Poisson process.



42 3. Properties of the bomb crater point pattern data

3.6. Characteristics for inhomogeneous processes

All summary characteristics considered so far are intended to be used for stationary pro-
cesses. Although their definition explicitly refers to stationarity (e.g. in terms of a constant
intensity λ), formal application to non-stationary processes is possible. It may lead to bi-
or multimodal distributions in D̂(r) and Ĥs(r); as observed for the bomb crater patterns,
ĝ(r) and K̂(r) are similar to estimates which would be obtained for cluster processes with
(spurious) large clusters (Illian et al., 2008, page 280).

Baddeley, Møller, and Waagepetersen (2000) introduced an approach for non-stationary
processes based on intensity-reweighting, which can be applied for so-called second-order
intensity-reweighted stationary processes such as inhomogeneous Poisson processes and
nonstationary processes resulting from p(s)-thinning of stationary processes.
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(a) Poisson process (Fig. 2.1)
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(b) regular process (Fig. 2.2(a))
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(c) clustered process (Fig. 2.2(c))
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(d) inhomogeneous Poisson pro-
cess (Fig. 2.3(c))
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cess (Fig. 2.4(a))
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Figure 3.13.: Inhomogeneous K-function: The solid lines represent the estimated inhomogeneous K-
functions for the simulated patterns, the dashed lines correspond to the theoretical inhomogeneous K-
functions of an (inhomogeneous) Poisson process.
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The inhomogeneous K-function is defined as

Kinhom(r) =
1

ν(B)
E

∑
xi∈X∩B

∑
xj∈X\{xi}

1(||xi − xj|| ≤ r)

λ(xi)λ(xj)
,

where B is a bounded Borel set in R2. The inhomogeneous K-function does not depend on
the choice of B and can be interpreted as Palm expectation:

Kinhom(r) = Es

∑
xi∈X\{s}

1(||xi − s|| ≤ r)

λ(xi)
.

Just like the K-function, the inhomogeneous K-function is not unique: For every intensity
function λ(s) it is possible to find a non-Poisson process whose inhomogeneous K-function
is identical to the inhomogeneous K-function of an inhomogeneous Poisson process with
intensity function λ(s). The K-function is invariant under random thinning, a similar
property holds for the inhomogeneous K-function (Baddeley, Møller, and Waagepetersen,
2000).

The estimation of inhomogeneous summary functions implies the estimation of λ(s). To
enable distinction of large-scale variation of the intensity and small-scale correlation, a
smooth estimate needs to be used. For kernel estimation, the bandwidth should be chosen
larger than in the estimation of summary characteristics (Illian et al. (2008), page 281).
If a kernel estimator is used, λ(s) is overestimated at data points (Baddeley, Møller, and
Waagepetersen, 2000).

Examples for the simulated patterns from Chapter 2 are shown in Figure 3.13. For
the homogeneous Poisson process as well as for the inhomogeneous Poisson processes,
the estimated functions for the simulated patterns should be very close to the theoretical
inhomogeneous K-function. However, the estimated functions typically take larger values
for small r and smaller values for large r.

In spatstat, the inhomogeneous K-function is estimated as follows:

K̂inhom(r) =
∑
i

∑
j

1(d(i, j) ≤ r) · e(xi,xj, r)
λ̂(xi)λ̂(xj)

,

where d(i, j) is the distance between two (ordered) points and e(xi,xj, r) the corresponding

edge correction weight, which depends on r. λ̂(xi) and λ̂(xj) are the values of the esti-
mated intensity function. A leave-one-out estimator can be used to avoid overestimation
at data points. The implemented edge correction methods are the border method, a mod-
ified version of the border method, Ripley’s isotropic correction and Ohser’s translation
correction.

To reduce variability and bias in small samples and in case of strong inhomogeneity, the
estimator can be rescaled.
In Fig. 3.14, the theoretical K-function for the inhomogeneous Poisson point process to-
gether with the estimates for Examples A to F obtained using Ripley’s isotropic edge
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correction is depicted. For Example A, the observed values are a bit higher than the theo-
retical values for r < 300 and smaller for r > 300. The results for Examples C, E and F are
similar. For Example D, the estimated function is very close to the theoretical function.
Because of the irregular shape of the study region, the behaviour is less clear for Example
B. In general, the deviations from an inhomogeneous Poisson point process seem to be
small.
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Figure 3.14.: Inhomogeneous K-function: The solid lines represent the estimated inhomogeneous K-
functions for the observed patterns, the dashed lines correspond to the theoretical inhomogeneous K-
functions of an (inhomogeneous) Poisson process.
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An inhomogeneous L-function can be defined analogously. The results are less clear than
for the inhomogeneous K-function both for the simulated patterns (Figure 3.15) and the
observed patterns (Figure 3.16). In particular, the estimated values for Examples A, E and
F are larger than expected for an inhomogeneous Poisson process.
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(a) Poisson process (Fig. 2.1)
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(b) regular process (Fig. 2.2(a))
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(c) clustered process (Fig. 2.2(c))

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

r [m]

L i
nh

om
(r)

observed
theoretical

(d) inhomogeneous Poisson pro-
cess (Fig. 2.3(c))
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(e) inhomogeneous Poisson pro-
cess (Fig. 2.4(a))
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(f) inhomongenous Poisson pro-
cess (Fig. 2.4(d))

Figure 3.15.: Inhomogeneous L-function: The solid lines represent the estimated inhomogeneous L-
functions for the simulated patterns, the dashed lines correspond to the theoretical inhomogeneous L-
functions of an (inhomogeneous) Poisson process.
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Figure 3.16.: Inhomogeneous L-function: The solid lines represent the estimated inhomogeneous L-
functions for the observed patterns, the dashed lines correspond to the theoretical inhomogeneous L-
functions of an (inhomogeneous) Poisson process.
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(a) Poisson process (Fig. 2.1)
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(b) regular process (Fig. 2.2(a))
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(c) clustered process (Fig. 2.2(c))
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(d) inhomogeneous Poisson pro-
cess (Fig. 2.3(c))
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Figure 3.17.: Inhomogeneous pair correlation function: The solid lines represent the estimated inhomoge-
neous pair correlation functions for the simulated patterns, the dashed lines correspond to the theoretical
inhomogeneous pair correlation functions of an (inhomogeneous) Poisson process.

Second-order intensity-reweighted stationary processes have a pair correlation function
which depends only on r = ||x − y||. If the constant intensity estimator is replaced by
a variable intensity function estimator, g(r) ≡ 1 is obtained for inhomogeneous Poisson
processes. The results for the simulated patterns (Figure 3.17) and for the observed pat-
terns (Figure 3.18) are rough, although a larger bandwidth was chosen. The estimated
inhomogeneous pair correlation functions for Examples A to F are slightly closer to 1 than
the estimated pair correlation functions.

Inhomogeneous analogues can also be defined for the empty-space and the nearest-
neighbour distance distribution functions, but are not considered here.

It is not possible to make any judgements about whether the high values of Ripley’s
K-function and the pair correlation function are due to clustering or inhomogeneity (see
also Section 2.5.3 for the problems concerning the distinction of these two phenomena).
But the inhomogeneous K-functions indicate that the observed patterns can be described
sufficiently well by an inhomogeneous Poisson process. Moreover, according to OFD Nieder-
sachsen, the inhomogeneous Poisson model fits the subject-matter theory better than clus-
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ter models. The assumption of several targets in a property is not justified for most
examples. In some cases, like for Example B, the target of the attack even seems to be
situated outside the property to be cleared.
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Figure 3.18.: Inhomogeneous pair correlation function: The solid lines represent the estimated inhomoge-
neous pair correlation functions for the observed patterns, the dashed lines correspond to the theoretical
inhomogeneous pair correlation functions of an (inhomogeneous) Poisson process.



4. Methods for constructing high-risk
zones

Recall that W denotes the observation window of the spatial point process X, i.e. the
property of interest and the area for which data are available. The process X represents
the locations of all events, observed as well as unobserved. Only a thinned version Y of the
full process X (e.g. the exploded bombs recognized by the bomb craters) has been observed.
It consists of NY (W ) = nY observations. The process of unobserved events is Z = X\Y .
The probability of non-observation q for every event is assumed to be homogeneous in W ,
which means that every x ∈ X is element of Z with probability q, regardless of its location
s ∈ W and independently of the behaviour of the other elements of X.

Three methods for constructing high-risk zones are presented in this chapter: The tra-
ditional method, the quantile-based method (which is not a new approach, but has not
been evaluated so far) and the intensity-based method, which is a novel approach based
on spatial point process theory.

The methods have been presented in less detail in Mahling et al. (2013).

4.1. Traditional method

The method currently used for constructing high-risk zones for unexploded bombs consists
in discs of a fixed radius r centered at each observed event, whose union gives the high-risk
zone Rr:

Rr = {s ∈ W : min
j
||s− yj|| ≤ r}. (4.1)

The radius r is chosen by an expert in advance. So besides expert knowledge, this approach
uses only the coordinates of the observed events. General characteristics of the patterns
are ignored completely.

In Figure 4.1, a radius of 150 m was used, which is rather a large value. As a consequence,
the high-risk zone for Example D comprises the entire observation window. For Example
C, most of the window is filled by the high-risk zone. The high-risk zones for Examples A
and B seem ragged, whereas the radius seems to be too large for Example E and possibly
also for Example F.

These high-risk zones can be interpreted as random sets, more specifically as germ-grain
models (Illian et al. (2008), p. 43):

Rr =
⋃
y∈Y

b(y, r) = Y ⊕ b(o, r), (4.2)
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where b(o, r) denotes a disc of radius r centered on o and ⊕ denotes Minkowski addition,
i.e. A⊕B = {a + b : a ∈ A ∧ b ∈ B} for A,B ⊆ Rd.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 4.1.: High-risk zones (shaded grey areas) obtained for a fixed radius of 150 m.
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4.2. Quantile-based method

A more sophisticated approach called quantile-based construction method represents a
heuristic development of the traditional method. Instead of the arbitrary choice of the
radius by an expert, the radius of the discs is determined as the p-quantile Q(p) of the
distribution of the nearest-neighbour distance:

For every bomb yi in Y , the distance to the nearest other bomb in Y , the nearest-
neighbour distance

ti = min
yj∈Y ;j 6=i

||yi − yj||, (4.3)

is computed and the empirical distribution function

G(r) =
1

nY

∑
i

1{ti ≤ r} (4.4)

of the nearest-neighbour distances of the point pattern is determined. No edge correction
is performed, but the empirical distribution function is computed directly from the raw
nearest-neighbour distances. The radius of the discs is then given by the p-quantile Q(p)
of the distribution of this nearest-neighbour distance, where 0 ≤ p ≤ 1 is specified by the
user.

Hyndman and Fan (1996) recommend the following estimator for the p-quantile Q(p):

Q̂(p) = (1− γ)t(j) + γt(j+1), (4.5)

where j = bpn+mc, γ = np+m− j, m = (p+ 1)/3 , n is the sample size and t(j) denotes
the jth order statistic.

For a given value p, the high-risk zone consists of all locations s whose distance to the
nearest observation does not exceed Q̂(p), i.e.

Rp = {s ∈ W : min
j
||s− yj|| ≤ Q̂(p)}. (4.6)

As both the traditional method and the quantile-based method rely on the distance to the
nearest event, these two methods can be subsumed under the term distance-based methods.

Quantile-based high-risk zones for Examples A to F are shown in Figure 4.2. The high-
risk zone for Example B is less ragged than before, the high-risk zone for Example C more.
For Examples E and F, the high-risk zones become smaller. The high-risk zone for Example
D does not comprise the entire observation window.

Note that this approach does not fix the global risk of leaving unobserved events outside
the high-risk zone. Instead, the probability that a single unobserved event is covered by
the high-risk zone should be close to p, so the individual risk for each event is specified.

As a modification, the radius could be determined from the estimated nearest-neighbour
distance distribution function D(r). This approach would yield very similar high-risk zones.
Figure 4.3 compares the functions D(r), which is corrected for edge effect, and G(r). For
Examples A and F, there is almost no difference at all. For Examples C, D and E, the
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values of D(r) are slightly larger than those of G(r), so the resulting radius would be a bit
smaller. The resulting radius for Example B could be slightly smaller or slightly larger.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 4.2.: High-risk zones (shaded grey areas) obtained for the quantile-based method by using the 99 %
quantile.
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(c) Example C
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(d) Example D
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(e) Example E
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Figure 4.3.: Empirical distribution functions of the nearest-neighbour distance with and without edge
correction.
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4.3. Intensity-based method

4.3.1. Basic idea

The aim is to construct a high-risk zone which comprises a large fraction of the unobserved
events while covering a small area. This is achieved via the intensity-based construction
method : The high-risk zone consists of those locations in the observation window W for
which the intensity is largest.

The intensity function of the complete point process X is denoted by λX(s). As the
probability of non-explosion for every bomb q is assumed to be homogeneous in W , the
intensity functions of the point process Y and Z are λY (s) = (1− q) · λX(s) and λZ(s) =
q · λX(s), respectively. For the application where Y is the process of bomb craters and Z
the process of unexploded bombs it is indeed realistic to assume that the two intensities
are proportional (see Tavakkoli et al. (2012)).

For a given threshold c > 0, a high-risk zone Rc is defined as

Rc = {s ∈ W : λ̂Z(s) ≥ c}. (4.7)

The general idea is closely related to the principle of highest posterior density intervals
known from Bayesian inference. Highest posterior density intervals are credible intervals
with minimal length (see Held, 2008, pages 159/160). Analogously, highest posterior den-
sity regions are credible regions with minimal area. As the point density of a spatial point
process is proportional to the intensity function, Rc is the high-risk zone with minimal area
comprising a certain fraction of the unobserved events.

Determining an intensity-based high-risk zone consists of the following steps: First of all,
the intensity function λY (s) is estimated. As the probability of non-observation q for every
event is assumed to be homogeneous, we can use λ̂Y (s) to estimate the intensity function
of the process Z: λ̂Z(s) = q/(1 − q) · λ̂Y (s). The region within the contours defined by
λ̂Z(s) = c forms the high-risk zone. The estimation of λY (s) and the determination of the
threshold c > 0 will now be explained in detail.

4.3.2. Estimation of the intensity function by kernel methods

The intensity λY (s) of the pattern of observed events can be estimated by using a kernel
method (Diggle, 1985; Baddeley, 2008):

λ̂Y (s) = e(s) ·
nY∑
i=1

KH (s− yi), (4.8)

where KH (·) is an anisotropic Gaussian kernel and e(s) is an edge effect bias correction. The
variance-covariance matrix H of the Gaussian kernel determines the smoothing bandwidth.
It is a symmetric positive definite d× d matrix.
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Edge correction

Edge correction is necessary because observations lying outside the window, possibly near
the boundary, are not taken into account, which would result in a negative bias around the
boundary of the observation window. Diggle (1985) proposes an edge effect bias correction
e(s) of the form

e(s)−1 =

∫
W

KH (s− v) dv, (4.9)

which will be applied in this thesis. Note that Berman and Diggle (1989) introduced a
modified edge correction with the same correction term.

Determination of the optimal variance-covariance matrix

Diggle (1985) determines the optimal smoothing bandwidth for one-dimensional point pro-
cesses minimising the mean squared error (MSE) for stationary Cox processes and finds
that the MSE is intractable for the two-dimensional analogue because of a “double inte-
gral [which] cannot be reduced to an explicit formula”. Although this problem is solved in
Diggle (2003), this approach is not applied here as anisotropy cannot be taken into account.

Instead, we make use of the fact that intensity estimation and density estimation are
closely related. Of course, a kernel density estimator

f̂(s,H ) =
1

nY
·
nY∑
i=1

KH (s− yi) (4.10)

does not comprise edge correction as the observations from a bivariate density are not
restricted to some kind of observation window. The normalizing constant 1/nY , however,
does not affect the optimal choice of the bandwidth because nY is fixed. Two further
differences of intensity estimation compared to density estimation are that “for a fixed
region the number of observations does not increase to infinity”when asymptotic properties
are considered and that “events in nearby regions can be correlated” (Guan, 2008b). For
the special case of a stationary Cox process on the line, however, the bandwidth minimising
MSE for intensity estimation is identical to the bandwidth determined via leave-one-out
least squares cross-validation for density estimation (Diggle and Marron, 1988). So it seems
justified to apply criterions which have initially been developed for density estimation.

A popular criterion for determining the optimal smoothing parameter for radially sym-
metric kernels with bandwidth h is least-squares cross-validation (LSCV) (Silverman,
1992), where the integrated square error∫

W

{
f̂h(s)− f(s)

}2

ds =

∫
W

f̂ 2
h(s)ds− 2

∫
W

f̂h(s)f(s)ds +

∫
W

f 2(s)ds (4.11)

is minimized over h. However, the high-risk zones which resulted for these kernels turned
out to be too small and anisotropy cannot be taken into account if a radially symmetric
kernel is employed.
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Wand and Jones (1993) recommend the use of unconstrained (i.e. not necessarily diagonal)
symmetric matrices H (with diagonal elements h21 and h22 and off-diagonal element h12),
thus allowing the Gaussian kernel to have arbitrary orientation.

Such matrices can be selected using smooth cross-validation (Duong, 2007), which is
based on two common criteria for bandwidth selectors, the Mean Integrated Squared Er-
ror (MISE) (see Jones et al., 1991) and the Asymptotic Mean Integrated Squared Error
(AMISE) (see Scott, 1992, Chapter 6).

MISE The Mean Integrated Squared Error is

MISE(H ) = E

[∫
R2

{f̂(s,H )− f(s)}2ds
]
. (4.12)

The optimal bandwidth HMISE minimizing MISE(H ) does not have a closed form (cf.
Wand and Jones (1995), p. 99). For this reason, the Asymptotic Mean Integrated Squared
Error (AMISE) is commonly used to select H .

AMISE The Asymptotic Mean Integrated Squared Error is obtained by using a multivari-
ate version of Taylor’s theorem (Wand and Jones, 1995, Chapter 4.3) and can be written
in the following form:

AMISE(H ) =
1

nY
· 1

4π
· |H |−

1
2 +

1

4
· (h21 h12 h22)Ψ4

 h21
h12
h22

 , (4.13)

where Ψ4 is a 3×3 matrix containing integrated density derivative functionals of f . Details
about Ψ4 can be found in Wand and Jones (1995, pages 98/99) and in Duong and Hazelton
(2003). Estimating Ψ4 yields a plug-in estimate PI(H ) of the AMISE. A pilot bandwidth is
required for the estimation of Ψ4. For this purpose, it is sufficient to employ a bandwidth
matrix of the form G = g2I , where g is selected to minimise the Sum of AMSE (SAMSE)
criterion (Duong and Hazelton, 2003). The plug-in bandwidth matrix ĤPI which is needed
for estimating the intensity of the observed point pattern is then obtained by minimising
the plug-in estimate of AMISE, PI(H ). The first term on the right-hand side represents the
asymptotic integrated squared bias, the second term represents the asymptotic integrated
variance.

SCV Smooth cross-validation combines MISE and AMISE: The sum of the estimated ex-
act integrated squared bias and the estimated asymptotic integrated variance is minimised.
This can be interpreted as minimisation of the MISE for data which have been presmoothed
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with another kernel LG with pilot bandwidth matrix G (Duong and Hazelton, 2005b). In
case of Gaussian kernels KH and LG , the criterion is

SCV(H ) =
1

n2
Y

nY∑
i=1

nY∑
j=1

(φ2H+2G − 2φH+2G + φ2G)(yi − yj) +
1

nY

1

4π
|H |−

1
2 , (4.14)

where φ(·) is the bivariate normal density with zero mean vector and identity covariance

matrix and φH (y) = |H |− 1
2φ(H−

1
2 y).

While the optimal bandwidth H is required to be unrestricted, it is sufficient to employ
a bandwidth matrix of the form G = g2I as pilot bandwidth for computing SCV(H ). To
obtain a reasonable result, the data are sphered before, i.e. the sample covariance matrix
S is computed and transformed data ỹ = S−

1
2 y are used to determine G̃ , from which

G = S−
1
2 G̃S−

1
2 is derived. The choice of g is illustrated in detail in Duong and Hazelton

(2005a).
Figure 4.4 shows the estimated intensity for Examples A to F. The variance-covariance

matrix of the Gaussian kernel was selected minimising the smooth cross-validation criterion.
Note that the contours are neither equidistant nor the same for all examples, but were
chosen so that they can be compared with the borders of the high-risk zones later on.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 4.4.: Contour plots of the estimated intensity λ̂Y (s) for the two properties of interest; the variance-
covariance matrix of the Gaussian kernel was chosen automatically using smooth cross-validation.
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4.3.3. Direct specification of the threshold c

A simple approach for constructing high-risk zones based on the estimated intensity results
if the cut-off value c is specified directly. The interpretation of a high-risk zone

Rc = {s ∈ W : λ̂Z(s) ≥ c} (4.15)

determined in this way is that the expected number of unexploded bombs per unit square
does not exceed c in any location outside the high-risk zone.

High-risk zones obtained for q = 0.10 when cutting at λ̂Z(s) = 0.00001 are shown
in Fig. 4.5. This specific choice of c results in high-risk zones which are generally rather
small, especially for Examples A and B. Only for Example D, all observations are contained
in the high-risk zone. The differences between the examples make clear that one needs to
take into account the average intensity: It is low for Examples A and B compared to
Examples C, D and F. The average intensity for Example E, though, is larger than the
average intensity in Example B. However, the events are concentrated on a small part
of the observation window of Example E. It is interesting to consider the point density
distribution function G(t) (see Section 2.1.2) to gain more insight. Figure 4.6 depicts the
estimated point density distribution function of Y and the value of λ̂Y (s) corresponding to
λ̂Z(s) = 0.00001 for q = 0.1. The point density distribution function of Example D differs
considerably from all others and is almost linear. For Examples C and D, the estimated
intensity is below the threshold in less than 20 % of the observation window. For all
other examples, this fraction is much higher (between 50 % and 90 %). The point density
distribution functions for Examples E and F are extremely steep for values near 0, which
reflects that the observations are concentrated on a part of the window only.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 4.5.: High-risk zones (shaded grey areas) obtained for the intensity-based method by cutting at

λ̂Z(s) = 0.00001 (probability of non-explosion q = 0.10).
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 4.6.: Estimated point density distribution function of Y and threshold determining the high-risk
zones.
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4.3.4. Specification of the threshold c via the global failure
probability

To find an appropriate value for c, the failure probability of high-risk zone Rc,

P{NZ(W\Rc) > 0}, (4.16)

i.e. the probability that not all unexploded bombs are covered by the high-risk zone, is
considered. We want to find a high-risk zone Rc for which this probability equals a fixed
value 0 ≤ α ≤ 1.

As pointed out, the number of unexploded bombs NZ(W ) is unknown. If X is assumed
to be an inhomogeneous Poisson point process, Y and Z are also Poisson point processes
(Illian et al., 2008, page 367) and hence

NZ(B) ∼ Po{ΛZ(B)} with ΛZ(B) = qΛX(B) =
q

1− q
ΛY (B). (4.17)

Given the probability of non-explosion q and an estimate of the intensity function, the
estimated failure probability can be computed as

P̂{NZ(W\Rc) > 0} = 1− exp{−Λ̂Z(W\Rc)} · {Λ̂Z(W\Rc)}0 ·
1

0!

= 1− exp

[
−
{

q

1− q

(∫
(W\Rc)

λ̂Y (y)dy

)}]
. (4.18)

The threshold c for which P̂{NZ(W\Rc) > 0} = α holds is determined by a numeric
root finding procedure. Figure 4.7 illustrates the high-risk zones which are obtained if q
is assumed to be 0.1 and α = 0.4 is chosen. Most of the observed events are covered by
the high-risk zones. The high-risk zone does not comprise the entire observation window
for any of the examples. Compared to high-risk zones obtained by using a distance-based
method, the intensity-based high-risk zones are less ragged and have smoother borders.

As the parameter α defines the global risk (i.e. the probability that not all unobserved
events are covered) of a high-risk zone, it may be problematic to use the same α for
properties of different size.

This does not play any role if the threshold c is specified directly. In this case, it is
possible to estimate the corresponding failure probability

P̂{NZ(W\Rc) > 0} = 1− exp

[
−
{

q

1− q
Λ̂Y (W\Rc)

}]
(4.19)

afterwards.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 4.7.: High-risk zones (shaded grey areas) obtained for the intensity-based method with failure
probability α = 0.4 (probability of non-explosion q = 0.10).
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5. Application and evaluation of the
construction methods for high-risk
zones

In this chapter, the construction methods introduced in Chapter 4 are applied to the bomb
crater data. First, summary functions are used to investigate if the chosen inhomogeneous
Poisson point process model with intensity function λ̂Y (s) is appropriate. For this purpose,
Monte Carlo tests based on the K-function and the pair correlation function are performed.
Then, an evaluation procedure is presented and results obtained for the three construction
methods are discussed. Finally, the properties of the intensity-based and the quantile-based
construction methods are compared and a recommendation is given.

Some of the results for Examples A and B have been presented in Mahling et al. (2013),
where the methodology has been introduced.

5.1. Model check

For the intensity-based method, we assume that the observed patterns are realisations of
an inhomogeneous Poisson point process with intensity function λ̂Y (s). As the inhomoge-
neous K-functions indicate that the observed patterns can be described sufficiently well by
an inhomogeneous Poisson process, it generally seems justified to use the intensity-based
construction method for high-risk zones. However, it is advisable to check the inhomoge-
neous Poisson model with intensity function λ̂Y (s) estimated as described in Section 4.3.2
in a more rigorous way. Since the intensity of the Poisson process is estimated nonpara-
metrically, it is not possible to consider residuals as proposed in Baddeley et al. (2005)
and Baddeley et al. (2008) or Guan (2008a), as they are only defined for fully parametric
models. Similar problems are encountered concerning the application of other approaches
such as the tests proposed by Brix et al. (2001), where the observation window is split into
cells and it is not possible to take into account the estimated intensity function λ̂Y (s).

Therefore, a traditional approach was chosen, a Monte Carlo test (see Ripley, 1981). The
initial idea to these tests is attributed to Barnard (1963). They were discussed in more
detail by Ripley (1977). Diggle (1979) recommends “the use of several tests to investigate
different aspects of the same data-set” and states that the significance level should not be
interpreted too strictly. If the model which is tested was fitted via a summary characteristic
(see Section 7.2), a summary characteristic should be chosen which is of different nature
than the characteristic used for parameter estimation (Illian et al., 2008, page 456).
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A Monte Carlo test based on the K-function with significance level 0.05 was performed,
whose critical points are represented by a simultaneous envelope. The theoretical mean
value of Ripley’s K-function for patterns generated by our model was calculated as the
average of 99 inhomogeneous Poisson point processes simulated from the estimated inten-
sity function λ̂Y (s). The symmetric envelopes are the result of adding and subtracting
the fifth largest absolute difference between this average and the K-functions of 99 further
simulated inhomogeneous Poisson point processes with intensity function λ̂Y (s). Details
can be found in Baddeley (2008). The same procedure was applied for the pair correlation
function.

As seen from Figure 5.1, all K-functions are entirely situated inside the envelopes, so
the K-functions of the observed patterns do not differ significantly from the K-functions
of an inhomogeneous Poisson point process with the estimated intensity function. As a
consequence, there is no evidence against using such modelling to describe the observed
bomb patterns. In addition, recall that the inhomogeneous Poisson model fits the subject-
matter theory better than cluster models (see Section 3.6).

Furthermore, we performed a Monte Carlo test based on the pair correlation function.
Figure 5.2 shows the estimated pair correlation function which we obtain when we follow
the recommendation of Stoyan and Stoyan (1992). As we can see, the estimated pair
correlation function for Example A exceeds the values of the envelope for small r. The
assumption of an inhomogeneous Poisson process is violated, possibly because of clustering
in small r (r < 50 m) in the case of Example A (note, however, that the estimation is
difficult for r < h, cf. Section 3.5). This finding is contrary to the result of the Monte
Carlo tests based on the K-function. We discuss the consequences of such clustering in
Chapter 7. The estimated pair correlation functions for Examples B and E are entirely
situated inside the envelope, so there is no evidence against the inhomogeneous Poisson
process model. For Examples C, D and F, the estimated pair correlation function is close
to the envelope for small r, which seems to be an estimation issue and not an indication
that the model is inappropriate.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.1.: Ripley’s K-function and simultaneous envelopes generated by inhomogeneous Poisson point
processes representing the critical points of a Monte Carlo test with significance level 0.05.
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(b) Example B

0 100 200 300 400 500

−
1

0
1

2
3

4
5

r [m]

g(
r)

observed pcf
estimated theoretical pcf
simultaneous 95 % envelope
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.2.: Pair correlation function and simultaneous envelopes generated by inhomogeneous Poisson
point processes representing the critical points of a Monte Carlo test with significance level 0.05.
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5.2. Simulation study

The behaviour of the proposed construction methods is now examined in order to evaluate
the properties of the methods and, finally, to find out which method yields the best high-risk
zones. As no data about the location of unexploded bombs is available, a simulation-based
procedure is used.

5.2.1. Setting

To obtain patterns that are as realistic as possible, the following approach was chosen:
The observed patterns Y were taken as ‘full patterns’, which means that one pretends
to know the full process X. Denote by X̃ = Y this artificially defined full process. In
the next step, each of the points of X̃ was thinned with probability q (i.e. the retention
probability was 1 − q) by drawing independent Bernoulli distributed random variables,
resulting in the process Ỹ of observed bombs and the process Z̃ of unobserved bombs. Of
course, the intensities of X̃, Ỹ and Z̃ are smaller than those of the real processes X, Y
and Z, but this procedure allows to perform a simulation without making an assumption
about the underlying point process model: It is not necessary to assume an inhomogeneous
Poisson point process or any other point process model to obtain X̃, Ỹ and Z̃. Moreover,
the parameter q never exceeds 0.15, so only a small fraction of the original observations
is thinned, which means that only little information is lost and the scenario reflects the
real problem in an appropriate way. The high-risk zone was then computed based only on
those observations assigned to Ỹ , whereas the observations in Z̃ were used to evaluate the
high-risk zone afterwards.

According to OFD Niedersachsen, a probability of non-explosion between 0.10 and 0.15
can be regarded as a well-established value. As global risk has never before been quantified
in this field, no standard values for the failure probability α and the quantile p exist, so
they were chosen based on expert knowledge of OFD Niedersachsen and α was set to 0.4,
0.2 or 0.1 for both examples. These values may seem large. However, one needs to take
into account that an unexploded bomb outside the high-risk zone does not necessarily
mean that somebody will die or be hurt. The bombs may be located in depths of several
metres where they might not be affected by construction work. Even if they are found,
this does not necessarily mean that they will cause damage. To ensure comparability of
the quantile-based and the intensity-based construction method, different quantiles were
used for Examples A to F: The 99 %, the 99.5 % and the 99.9 % quantile were used for
Example A, C, D, E and F and the 95 %, the 97.5 % and the 99 % quantile for Example
B. Three radii for the discs used in the traditional method were considered: According to
OFD Niedersachsen, a radius of 50 m was used in the past, whereas 100 m and 150 m
are common values nowadays. In each of those settings, 1000 iterations–in which X̃ was
thinned and thus different processes Ỹ and Z̃ were obtained–were performed.

The aim was to find the method which yields the smallest zones covering as many
unexploded bombs as possible. Moreover, it was investigated whether the parameters α
and p of the intensity-based and the quantile-based method are adhered to: The probability
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that at least one unexploded bomb lies outside the high-risk zone should be α in case of the
intensity-based construction method. Therefore, the computed fraction pout of generated
high-risk zones for which at least one unexploded bomb was located outside was compared
with α. For the quantile-based construction method, the fraction pmiss of unexploded bombs
outside the high-risk zone should take a value near 1− p. To check this, the fraction pmiss

was computed in every iteration, as well as the area of the zone.

5.2.2. Results for the bomb crater data

General results

Example A The results for Example A are shown in Table 5.1 for the quantile-based and
the intensity-based method, as well as for the traditional method. The table contains the
mean of pmiss and the area, as well as the fraction pout. For the quantile-based method,
the mean of pmiss of 1000 iterations is close to 1− p for all six combinations of parameters,
whereas for the intensity-based construction method, the fraction pout of generated high-
risk zones for which at least one unexploded bomb was located outside exceeds α in most
cases. The relative bias (pout − α)/α of the intensity-based method is between -0.063 and
1.840, the mean of the relative bias (pmiss − (1− p))/(1− p) of the quantile-based method
between -0.021 and 1.448.

Table 5.1.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example A, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

A q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.011 0.006 0.005 0.010 0.005 0.005
pout 0.375 0.249 0.192 0.498 0.318 0.284
mean area in m2 2711785 2987652 3186754 2870287 3115226 3295427

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.010 0.005 0.002 0.011 0.006 0.002
pout 0.324 0.196 0.086 0.465 0.285 0.139
mean area in m2 2663233 3097025 3345761 2701678 3108936 3367984

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.086 0.019 0.010 0.092 0.022 0.011
pout 0.979 0.575 0.377 1.000 0.751 0.545
mean area in m2 927549 1873954 2646576 907818 1847601 2622831

For the quantile-based method, the mean of pmiss is higher for q = 0.15 than for q = 0.10.
The mean area of the high-risk zone and the fraction pout of generated high-risk zones for
which at least one unexploded bomb was located outside increased with the probability
of non-explosion, as well. The situation is similar for the traditional method. The mean
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area, however, decreased for a higher probability of non-explosion. For the intensity-based
method, pout takes a higher value for q = 0.15 than for q = 0.10. Again, the mean area
increased with the probability of non-explosion, but the mean of pmiss did not.

Example B The results for Example B are shown in Table 5.2. Like for Example A, the
mean of pmiss corresponds to the quantile that was used for the quantile-based construction
method. For the intensity-based construction method, the fraction pout clearly exceeds the
given α. The relative bias (pout−α)/α of the intensity-based method is between 0.233 and
1.185, whereas the mean of the relative bias (pmiss − (1− p))/(1− p) of the quantile-based
method is between -0.036 and 0.517. Again, the fractions pout and pmiss often increased with

Table 5.2.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example B, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

B q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.066 0.052 0.015 0.054 0.025 0.016
pout 0.493 0.437 0.140 0.583 0.281 0.215
mean area in m2 2102079 2438842 2680396 2281263 2580386 2794571

QUANT p 0.95 0.975 0.99 0.95 0.975 0.99
mean pmiss 0.048 0.026 0.015 0.051 0.028 0.015
pout 0.375 0.223 0.141 0.489 0.317 0.175
mean area in m2 2456074 2667156 2792131 2467116 2673899 2825624

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.444 0.268 0.161 0.458 0.276 0.166
pout 0.990 0.937 0.811 0.997 0.980 0.932
mean area in m2 514930 1330002 1980762 493881 1288033 1935110

the probability of non-explosion, but they decreased for p = 0.99 and α = 0.2, respectively.
The mean area increased for the intensity-based and the quantile-based method, whereas
it decreased for the traditional method.

Example C The results for Example C are shown in Table 5.3. For the intensity-based
method, pout is too small in four of six cases. The relative bias (pout−α)/α of the intensity-
based method is between -0.333 and 0.300, the mean of the relative bias (pmiss−(1−p))/(1−
p) of the quantile-based method between 0.041 and 0.271. The mean area of the high-risk
zone increased with q for the intensity-based and the quantile-based method in most cases.
It decreased for the traditional method. The fraction pout increased for all three methods,
whereas the mean of pmiss decreased for the intensity-based method.
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Table 5.3.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example C, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

C q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.002 0.001 0.001 0.002 0.001 0.001
pout 0.267 0.161 0.102 0.339 0.166 0.130
mean area in m2 3160352 3228483 3268014 3199953 3253800 3285440

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.010 0.005 0.001 0.010 0.005 0.001
pout 0.719 0.475 0.159 0.839 0.606 0.199
mean area in m2 2821615 2924161 3267627 2822275 2942857 3265169

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.043 0.002 0.001 0.048 0.003 0.002
pout 0.267 0.161 0.102 0.339 0.166 0.130
mean area in m2 2273650 3030836 3242156 2241303 3015633 3237421

Example D The results for Example D are shown in Table 5.4. The fraction pout exceeded
α in four of six cases. For the quantile-based method, the mean of pmiss was too large for
p = 0.999. The relative bias (pout − α)/α of the intensity-based method is between -0.358
and 1.600, the mean of the relative bias (pmiss − (1 − p))/(1 − p) of the quantile-based
method between 0.229 and 3.520. For the quantile-based and the traditional method, the
mean area decreased for larger q, the fraction pout and the mean of pmiss increased. For the
intensity-based method, the mean area increased, the mean of pmiss decrased in two of three
cases and the fraction pout increased.

Example E The results for Example E are shown in Table 5.5. The fraction pout was
clearly smaller than α. The mean of pmiss, in contrast, was clearly too large for p = 0.999.
The relative bias (pout − α)/α of the intensity-based method is between -1.000 and -0.778,
the mean of the relative bias (pmiss− (1−p))/(1−p) of the quantile-based method between
-0.137 and 6.049. For larger q, the area of the high-risk zones determined by using the
intensity-based method increased, both the fraction pout and the mean of pmiss decrased.
For the quantile-based method, mean area and both fractions increased, whereas for the
traditional method, the area and pout decreased.

Example F The results for Example F are shown in Table 5.6. The fraction pout was
too small compared to α. The relative bias (pout − α)/α of the intensity-based method is
between -0.800 and -0.025, the mean of the relative bias (pmiss − (1 − p))/(1 − p) of the
quantile-based method between -0.014 and 0.172. For q = 0.15, the mean area increased for
the intensity-based and the quantile-based method, whereas it decreased for the traditional
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Table 5.4.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example D, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

D q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.006 0.006 0.004 0.006 0.005 0.004
pout 0.257 0.250 0.173 0.368 0.285 0.260
mean area in m2 469300 488269 500143 480154 495795 505061

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.012 0.007 0.004 0.013 0.007 0.005
pout 0.390 0.260 0.172 0.547 0.371 0.259
mean area in m2 472870 491366 515957 471551 490914 514553

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.016 0.004 0.004 0.017 0.004 0.004
pout 0.257 0.250 0.173 0.368 0.285 0.260
mean area in m2 451480 507911 518090 448556 506760 517830

method. Both fractions decreased for the intensity-based method. For the quantile-based
method, pout increased, whereas pmiss increased for the traditional method.

Relation between area and fraction of unexploded bombs outside

Scatterplots illustrate the relation between the area of the high-risk zones and the fraction
of unexploded bombs located outside the zones. Note that they are scaled individually
for every example and for the traditional method compared to the intensity-based and
quantile-based methods. In some cases, the high-risk zones obtained by the traditional
method are much smaller.

Example A Figure 5.3 illustrates the relation between the area of the high-risk zone and
the fraction of unexploded bombs outside the zone (pmiss) for each of the 6000 iterations
in total for all three construction methods. As one would expect, a negative correlation
between area and fraction pmiss is observed. In 4505 of the 6000 iterations for the quantile-
based method, no unexploded bomb was located outside the zone at all. This was the case
in 4084 iterations for the intensity-based method and 1773 iterations for the traditional
method. As the number of unexploded bombs varies between the iterations, many distinct
values for the fraction of unexploded bombs outside the zone have been obtained in those
cases where at least one unexploded bomb was located outside the zone.

The area of high-risk zones determined by using the traditional method varies little for
given radius. The fraction pmiss is generally large. The area of the quantile-based high-
risk zones varies most. The performance of the quantile-based and the intensity-based
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Table 5.5.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example E, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

E q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.007 0.001 0 0.003 0 0
pout 0.089 0.008 0.002 0.049 0.004 0
mean area in m2 532551 615330 683260 580401 660279 726555

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.009 0.007 0.007 0.009 0.007 0.007
pout 0.103 0.083 0.083 0.140 0.118 0.118
mean area in m2 508166 551519 552729 517562 559894 560015

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.058 0.002 0 0.068 0.003 0
pout 0.089 0.008 0.002 0.049 0.004 0
mean area in m2 339066 542426 707879 333000 537834 703681

construction method is similar. It is not possible to decide if one of the two methods yields
smaller high-risk zones and a smaller fraction pmiss at the same time.

Example B Compared to Example A, higher fractions of unexploded bombs outside the
zone were obtained for Example B (Figure 5.4), especially for the traditional method.
The performance of the quantile-based and the intensity-based method was similar. The
quantile-based high-risk zones had a very large area in several cases. This was not the case
for the intensity-based high-risk zones.
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(b) quantile-based method
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(c) intensity-based method

Figure 5.3.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example A.
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Table 5.6.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example F, intensity-based method (INT), quantile-based
method (QUANT) and traditional method (TRAD)

F q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.002 0.001 0 0.002 0.001 0
pout 0.348 0.195 0.025 0.332 0.177 0.020
mean area in m2 2804624 2977297 3101874 2901264 3054850 3168713

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.010 0.005 0.001 0.010 0.005 0.001
pout 0.805 0.571 0.165 0.883 0.699 0.201
mean area in m2 2241518 2491832 2685726 2272046 2499031 2736677

TRAD radius 50 m 100 m 150 m 50 m 100 m 150 m
mean pmiss 0.032 0.003 0 0.035 0.003 0
pout 0.348 0.195 0.025 0.332 0.177 0.020
mean area in m2 1926788 2582710 2976585 1902359 2567389 2964595
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(a) traditional method
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(b) quantile-based method
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(c) intensity-based method

Figure 5.4.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example B.

Example C The fraction pmiss was generally low for all three methods, especially for the
intensity-based high-risk zones, whose area was large (Figure 5.5).

Example D For Example D, the fraction pmiss was generally low for all three methods
(Figure 5.6). The results for the traditional method were close to those for the quantile-
based high-risk zones. The intensity-based high-risk zones had the largest area and the
smallest fraction pmiss.
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(a) traditional method
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(b) quantile-based method
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(c) intensity-based method

Figure 5.5.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example C.
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(a) traditional method
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(b) quantile-based method
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(c) intensity-based method

Figure 5.6.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example D.

Example E For Example E, the relation between the area of the high-risk zone and the
fraction of unexploded bombs outside the zone is depicted in Figure 5.7. For the intensity-
based method and–less often–for the quantile-based method, pmiss = 0 was achieved in
many cases. The area of some of these high-risk zones was very large.

Example F The fraction pmiss was generally low for all three methods for Example F
(Figure 5.8). The intensity-based high-risk zones yielded the smallest fraction pmiss, but
were rather large. Some of the quantile-based high-risk zones, however, were even larger.
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(a) traditional method
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(b) quantile-based method
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(c) intensity-based method

Figure 5.7.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example E.
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(a) traditional method
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(b) quantile-based method
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(c) intensity-based method

Figure 5.8.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the traditional method, the quantile-based and the intensity-based method, Example F.
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Relation between specified parameters and resulting threshold

In Figure 5.9, the relation between the given quantile and the resulting radius for the
quantile-based method is shown for q = 0.10 and q = 0.15. For Examples A and B, the
radius increased only little for larger p. The radius is typically larger for a larger probability
of non-explosion q. For Examples C and D, the radius obtained for p = 0.999 is extremely
large in many cases.

Figure 5.10 shows the relation between the specified parameter α and the resulting
threshold c for the intensity-based method. The resulting threshold c is larger for larger q
and also for larger α. There are by far less outliers than for the radius of the quantile-based
method. We observe a positive correlation between the average intensity (Chapter 3) of the
six examples and the threshold c. If we consider the point density distribution functions of
the six examples (Section 4.3.3), we see that the largest difference in c for different values
of α is obtained for the Examples A, E and F, whose point density distribution function is
steep for small values.

Summary

The resulting high-risk zones constructed using the traditional method are very small for
some of the examples. The mean fraction of unexploded bombs outside the high-risk zone
and the fraction of generated high-risk zones for which at least one unexploded bomb was
located outside are large, especially for Example B. This would of course change if larger
radii were chosen, but the choice of the radius will always remain arbitrary unless the
quantile-based method is used. So the use of the traditional method cannot be recom-
mended. A decision between the quantile-based and the intensity-based method is not
possible at this point. Furthermore, the simulation revealed that the specified parameters
α and p of the intensity-based and quantile-based method are not exactly adhered to.

An important aspect for the comparison of the construction methods is the way in which
the probability of non-explosion q is taken into account: In the traditional method, q does
not influence the shape of the high-risk zone at all. As the process Ỹ is obtained by
independent thinning of X̃, it contains a smaller number of points for q = 0.15 than for
q = 0.10. So the high-risk zones constructed with the traditional method are even smaller
for a higher probability of non-explosion in our simulation setting. The quantile-based
method does not explicitly take into account the probability of non-explosion q, either.
However, the nearest-neighbour distances were typically larger for high values of q and so
was the radius defined by the p-quantile. In this setting, the mean area of the high-risk
zone increased in most cases if q = 0.15 was considered, but so did the mean of pmiss

and the fraction pout. In other words, the probability of non-explosion is not taken into
account sufficiently: Indeed, the high-risk zones become larger with increasing q, but the
failure probability rises nonetheless. The only approach which uses q as a parameter is the
intensity-based method. The results show that the high-risk zones have a larger area for
q = 0.15 than for q = 0.10. In some cases, pout and the mean of pmiss decreased.
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.9.: Relation between given quantile and resulting radius for the quantile-based method.
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.10.: Relation between given α and resulting threshold c for the intensity-based method.
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5.3. High-risk zones with fixed area

For both the intensity-based and the quantile-based construction method, it is possible
to specify the desired area of the resulting high-risk zone. This approach allows a better
comparison of the performance: If the area is fixed, it is easier to compare the intensity-
based and the quantile-based method, because it is sufficient to consider pout and pmiss to
decide which method yields the better high-risk zones. The traditional method does not
need to be considered in this context, since it can be interpreted as a simplified version of
the quantile-based method.

5.3.1. Setting

In case of the quantile-based method, fixing the area of the high-risk zone means that
the optimal radius must be determined: The union of all respective discs, centered at the
observations, must result in the desired area. If this radius is not smaller than the minimum
of the nearest-neighbour distances and not larger than their maximum, we can determine
which quantile of the nearest-neighbour distances corresponds to this radius.

For the intensity-based method, the cut-off value c needs to be determined: The zone
which results from all locations with an intensity of at least c must have the desired area.
We can then determine to which value of

α = P̂{NZ(W\Rc) > 0} = 1− exp

[
−
{

q

1− q
Λ̂Y (W\Rc)

}]
(5.1)

this optimal c corresponds.
High-risk zones were determined for q = 0.10 and q = 0.15. The desired area of the

high-risk zone was chosen individually for every example. For each example, three values
were considered. In some cases where the desired area of the high-risk zone was large, no
quantile matching the necessary radius could be determined.

5.3.2. Results for the bomb crater data

Comparison of the methods

Example A The results for Example A are depicted in Table 5.7. The quantile-based
method gave better high-risk zones, i.e. its values of pmiss and pout were smaller than for
the intensity-based method. The comparison of the two methods is also illustrated in
Figure 5.11(a), which shows boxplots of pmiss for the simulations. The figure underlines
the better performance of the quantile-based method for Example A. The mean of the
retrospectively determined values for α exceeds the fraction pout, whereas the mean of the
retrospectively determined p corresponds to the mean of pmiss.

Example B Table 5.8 contains the results for Example B. In five of six cases, the high-risk
zones determined by using the intensity-based method gave better results. This relation is



86 5. Application and evaluation

Table 5.7.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example A, intensity-based method (INT) and quantile-based method
(QUANT)

A q 0.1 0.15 0.1 0.15 0.1 0.15
area 1500000 1500000 2000000 2000000 2500000 2500000

INT mean pmiss 0.076 0.078 0.028 0.032 0.014 0.016
pout 0.976 0.993 0.712 0.875 0.466 0.668
mean area in m2 1500001 1500001 2000001 2000000 2500001 2500001
mean α 0.988 0.999 0.885 0.963 0.573 0.732

QUANT mean pmiss 0.036 0.038 0.016 0.019 0.012 0.013
pout 0.809 0.938 0.528 0.721 0.446 0.608
mean area in m2 1500002 1500002 2000001 2000000 2500002 2500002
mean p 0.961 0.960 0.982 0.980 0.986 0.986

also visible in Figure 5.11(b). For the quantile-based method, the mean fraction pmiss was
generally slightly smaller than the mean of 1−p, whereas the values of pout were larger than
the mean of α for the intensity-based method. The fraction pout exceeded the mean of the
retrospectively determined α, whereas 1 − pmiss is close to the retrospectively determined
p. For the largest area of 2400000 m2 and q = 0.15, no quantile matching the radius could
be determined in five iterations.

Table 5.8.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example B, intensity-based method (INT) and quantile-based method
(QUANT)

B q 0.1 0.15 0.1 0.15 0.1 0.15
area 2000000 2000000 2200000 2200000 2400000 2400000

INT mean pmiss 0.079 0.076 0.057 0.056 0.050 0.046
pout 0.594 0.703 0.473 0.605 0.446 0.566
mean area in m2 1999998 1999998 2200000 2199999 2400000 2399999
mean α 0.466 0.610 0.337 0.461 0.221 0.315

QUANT mean pmiss 0.151 0.148 0.117 0.108 0.050 0.053
pout 0.830 0.915 0.775 0.884 0.444 0.605
mean area in m2 2000000 2000000 2199999 2199999 2399998 2399998
mean p 0.843 0.844 0.877 0.882 0.939 0.938

Example C As Table 5.9 shows, the intensity-based method yielded the better high-risk
zones with an area of 2000000 m2, the quantile-based method for larger area (see also
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Table 5.9.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example C, intensity-based method (INT) and quantile-based method
(QUANT)

C q 0.1 0.15 0.1 0.15 0.1 0.15
area 2000000 2000000 2500000 2500000 3000000 3000000

INT mean pmiss 0.089 0.091 0.034 0.034 0.008 0.008
pout 1 1 0.989 0.998 0.664 0.831
mean area in m2 1999999 1999999 2500000 2500000 3000000 3000000
mean α 1 1 0.999 1 0.771 0.894

QUANT mean pmiss 0.096 0.096 0.023 0.024 0.003 0.004
pout 1 1 0.975 0.995 0.401 0.542
mean area in m2 2000000 2000000 2499999 2499999 3000000 3000000
mean p 0.904 0.904 0.977 0.976 0.996 0.996

Figure 5.11(c)). The mean of the retrospectively determined values for α is close to the
fraction pout in most cases. For an area of 3000000 m2, no quantile could be determined in
seven cases, six of them for q = 0.15.

Example D The intensity-based method yielded the better high-risk zones for Example
D (see Table 5.10 and Figure 5.11(d)). The mean of the retrospectively determined values
for α exceeds the fraction pout. In many iterations, no quantile matching the necessary
radius could be determined. For the smallest area of 460000 m2, this happened three times
(one time for q = 0.10/two for q = 0.15), for an area of 480000 m2 23 times (7/16), and
for the largest area of 500000 m2 228 times (92/136).

Example E For an area of 280000 m2 and 300000 m2, the intensity-based method yielded
the better high-risk zones, for an area of 320000 m2, pout and pmiss were smaller for the
quantile-based method (see Table 5.11 and Figure 5.11(e)). Again, the mean of the retro-
spectively determined values for α exceeds the fraction pout.

Example F As Table 5.12 shows, the intensity-based method yielded the better high-risk
zones with an area of 1500000 m2 and 2000000 m2, whereas the quantile-based method
was better for an area of 2500000 m2 (see also Figure 5.11(f)).
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Table 5.10.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example D, intensity-based method (INT) and quantile-based method
(QUANT)

D q 0.1 0.15 0.1 0.15 0.1 0.15
area 460000 460000 480000 480000 500000 500000

INT mean pmiss 0.008 0.008 0.006 0.006 0.004 0.004
pout 0.303 0.436 0.253 0.368 0.173 0.259
mean area in m2 460000 460000 480000 480000 500000 500000
mean α 0.509 0.665 0.283 0.403 0.103 0.156

QUANT mean pmiss 0.015 0.015 0.008 0.008 0.004 0.004
pout 0.513 0.682 0.320 0.472 0.174 0.260
mean area in m2 460000 460000 480000 480000 500000 500000
mean p 0.986 0.986 0.992 0.992 0.996 0.996

Table 5.11.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example E, intensity-based method (INT) and quantile-based method
(QUANT)

E q 0.1 0.15 0.1 0.15 0.1 0.15
area 280000 280000 300000 300000 320000 320000

INT mean pmiss 0.108 0.117 0.090 0.095 0.076 0.078
pout 0.801 0.932 0.751 0.898 0.693 0.848
mean area in m2 280001 280000 300001 300000 319999 319999
mean α 0.972 0.996 0.958 0.992 0.938 0.985

QUANT mean pmiss 0.135 0.139 0.102 0.104 0.065 0.072
pout 0.880 0.969 0.819 0.944 0.648 0.818
mean area in m2 279999 280000 300002 300002 320000 320000
mean p 0.858 0.856 0.891 0.890 0.924 0.923
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Table 5.12.: Results of the simulation for given area: Mean fraction pmiss of unexploded bombs outside
the high-risk zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside, mean area of the zone and mean of the retrospectively determined
values for the parameters α and p, Example F, intensity-based method (INT) and quantile-based method
(QUANT)

F q 0.1 0.15 0.1 0.15 0.1 0.15
area 1500000 1500000 2000000 2000000 2500000 2500000

INT mean pmiss 0.064 0.066 0.022 0.022 0.005 0.006
pout 1 1 0.976 0.996 0.627 0.780
mean area in m2 1500000 1500001 1999998 1999998 2500001 2500001
mean α 1 1 0.998 1 0.788 0.905

QUANT mean pmiss 0.082 0.083 0.024 0.023 0.005 0.005
pout 1 1 0.991 0.999 0.564 0.741
mean area in m2 1499999 1499999 2000000 2000000 2500003 2500003
mean p 0.919 0.917 0.975 0.976 0.995 0.995
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.11.: Fraction pmiss of simulated unexploded bombs outside the high-risk zone for given area. The
boxplots compare the quantile-based and intensity-based method.
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Retrospectively determined values of α and p

The retrospectively determined values of α for the considered values of q and given area
are depicted in Figure 5.12. For Examples C, F and especially E, the values are high, often
very close to 1. If the area is augmented, α decreases. It increases for q = 0.15.

The retrospectively determined quantiles for the considered values of q and given area
are depicted in Figure 5.13. The quantile increases for a larger area. If q is increased, the
quantile decreases slightly; in many cases, the variance of the quantile increases.

Shape of the high-risk zones

Figure 5.14 shows the frequency that every pixel in the observation window was part of
the quantile-based high-risk zone in the 6000 total iterations. The same is depicted for the
intensity-based method in Figure 5.15. We can see the general shape of the quantile-based
and intensity-based high-risk zones and we get an impression of how much the high-risk
zones change for the considered combinations of area and probability of non-explosion.

The high-risk zones obtained with the quantile-based method are often more ragged,
single discs are visible in many cases. Intensity-based high-risk zones, in contrast, are
often coherent.
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(b) Example B
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(c) Example C
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(d) Example D

●
●

●●
●
●●●●●●
●

●

●
●●
●

●●
●●

●

●

●

●
●●

●

●●●
●●●

●
●

●
●●
●●●●

●

●●●●●
●●

●
●

●
●●
●●●●●
●

●

●
●
●

●

●●
●
●

●

●

●
●
●

●

●●
●●●

●

●

●
●●
●●
●●

●

●●
●
●●

●
●

●
●

●
●●●●
●

●

●
●●

●

●
●

●

●

●●
●
●

●

●

●
●
●

●

●●
●
●●

●

●

●

●
●
●
●●●

●

●●
●

●●

●
●

α

280000 300000 320000
q =  0.10 q =  0.15 q =  0.10 q =  0.15 q =  0.10 q =  0.15

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

(e) Example E
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(f) Example F

Figure 5.12.: Retrospectively determined values of α for the considered values of q and area.
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(a) Example A
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(b) Example B
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(c) Example C

●

●●
●●●
●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●●

●

●●●
●

●

●

●
●
●

●

●

●●

●

●
●

●
●●
●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●
●●●●

●

●●
●

●

●

●●

●

●
●●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●●●●

●

●

●

●
●
●●

●

●●●
●

●●●

●

●●

●

●●

●

●●
●

●●●

●

●

●●
●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●●●●●●●

●
●

●
●

●

●●

●

●

●
●
●●

●
●

●

●

●●●●●

●

●●

●

●
●

●

●

●

●

●

●●●●●●●●
●

●●●

●●●

●●

●
●

●

●●

●●●

●

●

●
●●

●●

●
●●●

●

●
●●

●

●●

●

●

●
●
●
●
●●●

●

●●

●

●
●
●
●●
●●●●

●

●

●

●

●
●●●●
●●

●

●

●●

●

●

●

●●●●

●

●
●●
●

●

●

●

●

●
●

●

●●●

●

●●

●

●●
●
●●

●

●●●●●●●
●

●●●

●

●●●
●●

●●

●●●●●●

●

●

●

●●●●●●

●

●

●

●
●●
●

●

●●●

●

●●
●●

●

●

●

●●●●
●

●

●
●

●

●

●

●
●
●

●

●
●
●
●●

●

●●
●●●●

●

●●

●
●

●●●●●●●
●●●●
●●

●

●●

●

●
●
●●●●

●

●

qu
an

til
e

460000 480000 500000
q =  0.10 q =  0.15 q =  0.10 q =  0.15 q =  0.10 q =  0.15

0.
97

0
0.

97
5

0.
98

0
0.

98
5

0.
99

0
0.

99
5

1.
00

0

(d) Example D
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(e) Example E
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(f) Example F

Figure 5.13.: Retrospectively determined quantile for the considered values of q and area.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 5.14.: Frequency that every pixel in the observation window was part of the quantile-based high-risk
zone in the 6000 total iterations.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 5.15.: Frequency that every pixel in the observation window was part of the intensity-based high-
risk zone in the 6000 total iterations.
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5.4. Properties of the methods for constructing high-risk
zones

The quantile-based and the intensity-based construction methods yielded comparable re-
sults in the simulation. To decide which method should actually be applied, however, we
should keep in mind that the more heuristic quantile-based construction method has a
vague theoretical justification. As the p-quantile Q(p) of the distribution of the nearest-
neighbour distance is used, the fraction of unexploded bombs outside the high-risk zone is
expected to be 1− p, i.e. risk is fixed for each unexploded bomb, but not globally.

The high-risk zones consist of the union of discs around the observations, so their shape
is less flexible than the shape of intensity-based high-risk zones. In particular, possible
anisotropy cannot be taken into account.

Moreover, the probability of non-explosion q is not a parameter of the quantile-based
method and is therefore not accounted for sufficiently.

Another disadvantage is that it is not possible to construct a quantile-based high-risk
zone with an arbitrarily small failure probability: The smallest failure probability is ob-
tained when the maximum of the nearest-neighbour distances is used as radius of the
discs. However, the probability that the maximum of the nearest-neighbour distances of
the full process exceeds the maximum of those of the thinned process (which is the failure
probability) depends on the characteristics of the point pattern and cannot be influenced
in any way. For Examples A to F, the minimal failure probability of the quantile-based
construction method was investigated in a simulation. Each observed pattern was thinned
and the maximum nearest-neighbour distance of the thinned pattern was determined. This
was repeated 10000 times for each example and five different values of q. Figure 5.16 com-
pares the maximum nearest-neighbour distances of the thinned patterns and the maximum
nearest-neighbour distance of the full patterns. For small values of q, the two values were
identical for at least 50 % of the iterations for most examples. Deviations in both directions
were observed. The effects were different for each example. The minimal failure probabil-
ity is the probability that the maximum nearest-neighbour distance of the thinned pattern
(i.e. the observed pattern of bomb craters) is smaller than the nearest-neighbour distance
of the full pattern (the pattern consisting of bomb craters and unexploded bombs). The
frequency that this happened in the simulation serves as an estimate for the minimal fail-
ure probability. The results are shown in Figure 5.17. For Examples A, C, D and E, the
estimated minimal failure probability increases with q. For q = 0.10 and q = 0.15, the
range is between 0.04 and 0.16. The values are small for Examples B and F and large for
Examples A, C and D.

For these reasons, the intensity-based construction method is recommended. It is inves-
tigated in more detail in the following chapters.
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure 5.16.: Comparison of the maximum of the nearest-neighbour distances in the full patterns (dashed
blue lines) and in (1 - q)-thinned patterns (boxplots); 10000 iterations.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 5.17.: Fraction of cases in which the maximum of the nearest-neighbour distances in the full pattern
was smaller than in the (1− q)-thinned pattern (10000 iterations).
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5.5. Application to simulated patterns

To investigate the applicability of the construction methods for high-risk zones, the
intensity-based method and the quantile-based method were tested in three cases which
differ from an inhomogeneous Poisson point process: The patterns in Figure 2.2(a) (regular
pattern), Figure 2.2(b) (homogeneous Poisson process) and Figure 2.2(c) (Thomas process)
were considered. The 99 %, the 99.5 % and the 99.9 % quantile were used and α was set
to 0.4, 0.2 or 0.1. The probability of non-explosion q was assumed to be 0.10 or 0.15.

(a) quantile-based method (b) intensity-based method

Figure 5.18.: High-risk zones, observed events on which the high-risk zones are based (filled diamonds),
unobserved events inside the zone (circles) and outside the zone (crosses; not present in this case) for the
quantile-based method (99 % quantile) and the intensity-based method (α = 0.4), homogeneous Poisson
process.

Examples of resulting high-risk zones in a single simulation iteration are depicted in Fig-
ures 5.18, 5.19 and 5.20. In addition to the high-risk zones, the events on which the high-risk
zones are based are depicted, as well as the points which were considered as unobserved
events and used for evaluation in this iteration. For the homogeneous Poisson process and
the regular process, the quantile-based high-risk zones cover (almost) the entire observation
window.

The results from 1000 iterations are summarised in Tables 5.13, 5.14 and 5.15. For the
homogeneous Poisson process, the high-risk zones are large. They were even larger for the
regular process, especially if the quantile-based method was applied. The fraction pout and
the mean of pmiss were extremely large for intensity-based high-risk zones for the regular
process. For the Thomas process, both fractions were small and the area of the high-risk
zones was considerably smaller than for the homogeneous Poisson process and the regular
process.
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Table 5.13.: Results of the simulation: Mean fraction pmiss of unobserved events outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unobserved event was
located outside and mean area of the zone, homogeneous Poisson process, intensity-based method (INT)
and quantile-based method (QUANT)

homogeneous q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.060 0.018 0.012 0.034 0.016 0.012
pout 0.412 0.159 0.107 0.384 0.204 0.169
mean area 0.9080 0.9553 0.9774 0.9346 0.9687 0.9844

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.011 0.011 0.011 0.011 0.011 0.011
pout 0.091 0.091 0.091 0.135 0.135 0.135
mean area 0.9932 0.9943 0.9943 0.9915 0.9924 0.9924

Table 5.14.: Results of the simulation: Mean fraction pmiss of unobserved events outside the high-risk
zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one unobserved
event was located outside and mean area of the zone, regular process, intensity-based method (INT) and
quantile-based method (QUANT)

regular q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.236 0.125 0.069 0.142 0.071 0.041
pout 0.966 0.792 0.572 0.960 0.771 0.533
mean area 0.9404 0.9733 0.9872 0.9583 0.9813 0.9910

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.016 0.011 0.011 0.016 0.013 0.013
pout 0.150 0.102 0.102 0.207 0.160 0.160
mean area 0.9991 0.9992 0.9992 0.9985 0.9986 0.9986

Table 5.15.: Results of the simulation: Mean fraction pmiss of unobserved events outside the high-risk
zone from 1000 iterations, fraction pout of generated high-risk zones for which at least one unobserved
event was located outside and mean area of the zone, Thomas process, intensity-based method (INT) and
quantile-based method (QUANT)

Thomas q 0.1 0.1 0.1 0.15 0.15 0.15

INT α 0.4 0.2 0.1 0.4 0.2 0.1
mean pmiss 0.007 0.003 0.001 0.004 0.002 0
pout 0.193 0.096 0.021 0.154 0.104 0.014
mean area 0.7784 0.8296 0.8645 0.8095 0.8534 0.8844

QUANT p 0.99 0.995 0.999 0.99 0.995 0.999
mean pmiss 0.010 0.004 0.003 0.009 0.004 0.003
pout 0.251 0.115 0.091 0.315 0.168 0.123
mean area 0.7693 0.8125 0.8570 0.7675 0.8189 0.8555
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(a) quantile-based method (b) intensity-based method

Figure 5.19.: High-risk zones, observed events on which the high-risk zones are based (filled diamonds),
unobserved events inside the zone (circles) and outside the zone (crosses) for the quantile-based method
(99 % quantile) and the intensity-based method (α = 0.4), regular process.

(a) quantile-based method (b) intensity-based method

Figure 5.20.: High-risk zones, observed events on which the high-risk zones are based (filled diamonds),
unobserved events inside the zone (circles) and outside the zone (crosses; not present in this case) for the
quantile-based method (99 % quantile) and the intensity-based method (α = 0.4), Thomas process.

The scatterplots in Figures 5.21, 5.22 and 5.23 underline that both the quantile-based
and the intensity-based method yield high-risk zones where the fractions pout and pmiss are
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(a) quantile-based method
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(b) intensity-based method

Figure 5.21.: Area of the high-risk zone and fraction of simulated unobserved events outside the zone for
the quantile-based and the intensity-based method, homogeneous Poisson process.
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(a) quantile-based method
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(b) intensity-based method

Figure 5.22.: Area of the high-risk zone and fraction of simulated unobserved events outside the zone for
the quantile-based and the intensity-based method, regular process.

small for the Thomas process. High-risk zones for the homogeneous Poisson process are
generally large. In practice, these large zones would suggest to search the whole property,
which is exactly the correct proceeding if the intensity of unexploded bombs is more or
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(a) quantile-based method
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Figure 5.23.: Area of the high-risk zone and fraction of simulated unobserved events outside the zone for
the quantile-based and the intensity-based method, Thomas process.

less constant. For the regular pattern, the fractions pout and pmiss are large, even though
the high-risk zones comprise a large fraction of the window.

In summary, the results for these three examples indicate that reasonable high-risk zones
can be obtained for clustered patterns via both methods. Both methods can in principle
also be applied for homogeneous patterns, where the high-risk zones will comprise most
of the window and should be extended to the entire window. Furthermore, the results
suggest that none of the methods can be applied successfully to regular patterns. Other
approaches need to be developed for regular patterns. It may be useful to consider k-
neighbour graphs (Illian et al., 2008, Section 1.8.5), which can be determined using the
R package spatgraphs (Rajala, 2012). Large regions without edges suggest gaps (Illian
et al., 2008, page 257) and can therefore be searched to find at least some of the unobserved
events. An example of a thinned regular pattern and the corresponding 4-neighbour graph
is depicted in Figure 5.24.
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Figure 5.24.: Thinned regular pattern and corresponding 4-neighbour graph.
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The results for the intensity-based method in Section 5.2 showed that the specified pa-
rameter α is usually not exactly adhered to. A possible reason is that the estimation of
the intensity function introduces uncertainty which is not accounted for in the construc-
tion method for high-risk zones. The problem is aggravated by thinning in the simulation
scenario. All results shown in the previous section referred to high-risk zones based on
the thinned version Ỹ of the observed process Y . A high-risk zone that is to be applied
in reality, however, will be based on all observations available, i.e. the entire process Y .
Therefore, it is not sufficient to choose a reasonable α expressing the intended failure prob-
ability, but it is indispensable to investigate the behaviour of the high-risk zone in a setting
of realistically high intensity.

To do so, a simulation procedure is proposed where the full process X of bomb craters
and unexploded bombs is assumed to be an inhomogeneous Poisson point process. Results
are shown for Examples A to F. Finally, a correction procedure is introduced.

The simulation procedure has been introduced in Mahling et al. (2013), where results
for Examples A and B have been shown, as well.

6.1. Simulation procedure based on the estimated
intensity function

X is assumed to be an inhomogeneous Poisson point process with intensity λX(s) =
1/(1 − q) · λY (s). In a first step, λY (s) is estimated using the kernel method described
in Section 4.3.2. In each iteration performed, an inhomogeneous Poisson point process X∗

with intensity λX∗(s) = 1/(1− q) · λ̂Y (s) is simulated. As before, it is partitioned into the
process Y ∗ of observed and the process Z∗ of unobserved events by drawing independent
Bernoulli distributed random numbers with probability q, i.e. P (x∗ ∈ Z∗) = q. Finally,
a high-risk zone based on Y ∗ is constructed via the intensity-based method. This proce-
dure can be regarded as a parametric bootstrap (see Efron and Tibshirani, 1993; Gentle,
2005; Givens and Hoeting, 2005). The fraction pout of high-risk zones for which at least
one unobserved event from X∗ is situated outside the zone expresses the risk. In addition,
the fraction pmiss of unobserved events outside the high-risk zone and the area of the high-
risk zone can be computed. Again, a probability of non-explosion q of 0.10 and 0.15 and
α = 0.4, α = 0.2 and α = 0.1 were considered.

To investigate the reason for the deviation of pout from α, a modified version of the sim-
ulation procedure was applied additionally: Instead of estimating the underlying intensity
of the simulated patterns in every iteration, the high-risk zone was determined based on
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the intensity which was used for simulation, so the high-risk zone was exactly the same
in every iteration, but the patterns changed. This procedure yields an ‘oracle estimator’,
which represents the most optimistic performance of the intensity-based method.

6.2. Results

For Examples A, B, D and E, 10000 iterations were performed. As Examples C and F
comprise a large number of events, only 1000 iterations were performed for these two
patterns.

The results for Example A are shown in Table 6.1. The fraction pout was close to α for
q = 0.1 and α = 0.4, but clearly larger than α for all other combinations of parameters.
The relative bias (pout − α)/α was between 0.0187 and 0.5890.

Table 6.1.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example A, intensity-based method (INT) and oracle estimator (ORACLE)

A q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.407 0.243 0.159 0.428 0.274 0.187

ORACLE pout 0.398 0.202 0.100 0.398 0.199 0.097

Even larger differences were observed for Example B (Table 6.2), where pout exceeded α in
all cases and the relative bias was between 0.1382 and 1.0180.

Table 6.2.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example B, intensity-based method (INT) and oracle estimator (ORACLE)

B q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.455 0.264 0.169 0.470 0.298 0.202

ORACLE pout 0.403 0.203 0.106 0.400 0.200 0.100

For Example C (Table 6.3), the fraction pout was generally smaller than α. The relative
bias was between -0.1800 and -0.0800.

Table 6.3.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example C, intensity-based method (INT) and oracle estimator (ORACLE)

C q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.357 0.174 0.092 0.344 0.164 0.085

ORACLE pout 0.395 0.190 0.085 0.389 0.205 0.098
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Table 6.4.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example D, intensity-based method (INT) and oracle estimator (ORACLE)

D q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.260 0.129 0.073 0.261 0.135 0.080

ORACLE pout 0.408 0.202 0.101 0.400 0.204 0.100

Table 6.4 shows the results for Example D. The fraction pout was considerably smaller than
α for all six combinations of parameters. The relative bias was between -0.3560 and -0.2020.
The results for Example E are similar, the fraction pout was generally even smaller than for
Example D, which results in a relative bias between -0.8170 and -0.6860.

Table 6.5.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example E, intensity-based method (INT) and oracle estimator (ORACLE)

E q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.126 0.045 0.018 0.107 0.038 0.016

ORACLE pout 0.405 0.201 0.103 0.403 0.198 0.099

For Example F, pout was smaller than α in four of six cases. The relative bias was between
-0.0700 and 0.2400 (Table 6.6).

Table 6.6.: Bootstrap result: Fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside; Example F, intensity-based method (INT) and oracle estimator (ORACLE)

F q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

INT pout 0.379 0.205 0.137 0.372 0.207 0.124

ORACLE pout 0.413 0.189 0.105 0.399 0.182 0.080

In all cases, pout was close to α for the oracle estimator: The relative bias (pout − α)/α
was between -0.0260 and 0.0105 for Example A, between 0 and 0.0630 for Example B and
between -0.1500 and -0.0125 for Example C. For Example D, a relative bias between -0.0010
and 0.0215 was obtained. The relative bias was between -0.0120 and 0.0330 for Example
E and between -0.2000 and 0.0500 for Example F.

This indicates that the estimation of the intensity is a crucial issue for the procedure
and that failure to meet the specification originates from this step.

A comparison of the fractions pout from the bootstrap simulation and the fractions pout

which were obtained in the evaluation simulation in Section 5.2 reveals that Example E is
the only example for which all values are larger than in Section 5.2. For all other examples,
deviations were observed in both directions: The bootstrap fractions are smaller in five of



108 6. Risk assessment

six cases for Example A, in four cases for Example B and in five cases for Example D. For
Example F, in contrast, they are larger in five of six cases. With regard to Example C,
three of the bootstrap fractions are smaller and three are larger. A possible reason for these
findings may be that for Examples E and F, the observed bomb craters are concentrated
on a relatively small part of the observation window.

6.3. Bootstrap correction

To correct for the bias with respect to α and obtain a high-risk zone with the intended
failure probability, the parametric bootstrap can be used in the following way:

1. For a given spatial point pattern, the intensity function is estimated and the simula-
tion procedure based on the estimated intensity function as described in Section 6.1
is applied.

2. The fraction pout represents an estimator for the failure probability, so the simulation
procedure yields an updated failure probability, which is possibly different from the
intended value.

This can be repeated with adapted values for the parameter α until we find the value which
results in the intended failure probability. To find this value more quickly, the search can
be realised in an adaptive procedure.

The algorithm for a possible adaptive procedure is given in Algorithm 1. The main idea
is that a desired failure probability failprob can be specified and the procedure yields
a value cutoff–which will usually differ from the desired failure probability–which is the
value that should be used for the parameter α when a high-risk zone is determined.

The precision of the routine depends on the number of iterations numit and the tolerance
tol. In every iteration, the algorithm checks if failprob - tol ≤ pout ≤ failprob + tol

can still be achieved. If this is not the case, a new value for cutoff is proposed.
Figure 6.1 shows how the value of cutoff is adapted for Examples A to F, starting

with α = 0.4. The number of iterations numit was 10000 and tol was set to 0.01. For
Examples A and C, the value which was obtained was smaller than 0.4 (0.28986 and
0.32250, respectively), whereas we obtained larger values for Examples B, D, E and F
(0.47150, 0.63957, 0.57259 and 0.53720).
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Input : spatial point pattern pattern, desired failure probability failprob,
number of iterations numit, tolerance tol, probability of
non-observation q

Output: parameter cutoff which should be used to determine a high-risk zone
with desired failure probability

numout ← 0;
iter ← 1;
cutoff ← failprob;
while iter ≤ numit do

simulate pattern from estimated intensity of observed pattern pattern;
perform thinning;
use thinned pattern to determine high-risk zone with parameter cutoff;
evaluate high-risk zone and determine number of unobserved events outside
high-risk zone (numbermiss);
if numbermiss > 0 then

numout ← numout + 1;

poutmin ← numout / numit;
poutmax ← (numout + numit − iter) / numit;
if poutmin > failprob + tol then

cutoff ← cutoff * iter/ (numit + 1);
iter ← 0;
numout ← 0;

if poutmax < failprob − tol then
cutoff ← cutoff * (1 + (numit − iter + 1) / numit);
iter ← 0;
numout ← 0;

iter ← iter + 1;

Algorithm 1: Bootstrap correction
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Figure 6.1.: Bootstrap correction: Values tested for α in course of the procedure. The dot represents the
final value.
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The tolerance parameter tol must be chosen reasonably depending on failprob and nu-

mit. If it is chosen too small, the probability that the proposed cutoff is accepted after
numit iterations is small even if it is correct, which results in unnecessary tries with further
values for cutoff. If we assume that cutoff is correct and therefore failprob is adhered
to (and we ignore the stopping criterion), the number numout of high-risk zones with at
least one unobserved event outside follows a binomial distribution whose parameters are
failprob and numit. Figure 6.2 shows the probability that numout takes a value between
failprob - tol and failprob + tol as a function of tol for numit = 10000 and numit

= 1000. The figure shows the worst case scenario failprob = 0.5, where the probabil-
ity is smaller than for every other value of failprob, and the situation for failprob =
0.10. Figure 6.3 illustrates what happens if tol is chosen too small. Many different values
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Figure 6.2.: Probability that a random variable which follows a binomial distribution with parameters
numit and failprob takes a value between failprob - tol and failprob + tol.

for cutoff between 0.66 and 0.72 are tested, but none of them is accepted. Note that
the bootstrap correction is based on a stochastic alogrithm, which explains why the final
cutoff for Example E was smaller than the values which are tested in Figure 6.3.

To recapitulate this chapter: A simulation procedure based on the estimated intensity
function has been introduced. The risk assessment revealed that the obtained failure prob-
ability usually deviates from the parameter α. Therefore, a bootstrap correction procedure
has been presented. It yields an updated value for α which leads to the intended failure
probability.
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7. Spatial clustering

The assumption of an inhomogeneous Poisson point process for the intensity-based method
implies that beyond spatial variation in the intensity function, there is no stochastic depen-
dence between observations. However, high values were obtained for Ripley’s K-function
and the pair correlation function in Chapter 3 and Section 5.1, which may indicate cluster-
ing. The inhomogeneous Poisson model fits the subject-matter theory better than cluster
models, but as clustering cannot be ruled out, it appears advisable to perform a sensi-
tivity analysis and investigate the behaviour of the intensity-based method in case that
the bombing point pattern is generated by a cluster process instead of an inhomogeneous
Poisson point process. A related question is if specific cluster models can be fitted to the
data and how the intensity-based high-risk zones behave if these models are used in the
simulation procedure from Section 6.1 instead of the inhomogeneous Poisson process.

Some of the results for Examples A and B and the procedure for the sensitivity analysis
in Section 7.1 have been shown in Mahling et al. (2013). In most parts of this chapter,
Examples C and F will not be considered because they comprise a large number of events,
which makes simulations very time-consuming.

7.1. Sensitivity analysis

7.1.1. Simulation procedure based on the intensity

In order to obtain simulated processes resembling the observed patterns, the estimated
intensity was used as a starting point and clustering was added. To achieve this, Neyman-
Scott processes (Neyman and Scott, 1958) were used following the definition of Cressie
(1993), which states that the cluster centres may form an inhomogeneous Poisson point
process.

Using such a Neyman-Scott point process model results in a modified simulation pro-
cedure for X∗ compared to Section 6.1: First, the cluster centres were simulated as an
inhomogeneous Poisson point process with intensity function

λC∗(s) =
1

τ · (1− q)
· λ̂Y (s). (7.1)

The number of points per cluster follows a Poisson(τ) distribution, the cluster points are
placed independently and uniformly inside a disc of radius r centered at the cluster centres.
The parameter τ > 0 determines the extent of clustering. If τ is small, the process of cluster
centres will contain almost as many points as the simulated Poisson processes in Section 6.1.
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Each of these centres will be replaced by a small number of cluster points. Note that even
for τ = 1, the process is clustered: Even though the process of cluster centres is a Poisson
process with the same intensity as in Section 6.1, the resulting process is not, since each
cluster centre is replaced by a small number of cluster points and this number is not in all
cases 1, but may be zero or larger than 1. If τ is large, the process of cluster centres will
consist of a small number of points, whereas the clusters will comprise a large number of
cluster points.

7.1.2. Behaviour of the high-risk zones

The radius r in the sensitivity analysis was chosen to be 80 m for Examples A and B,
a value which is larger than most of the observed nearest-neighbour distances, but small
enough to obtain clearly visible clusters for these two examples. Simulated Neyman-Scott
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(b) Example B

Figure 7.1.: Examples of simulated Neyman-Scott processes for r = 80 m and τ = 5.

processes for r = 80 m and τ = 5 are depicted in Figure 7.1. The clusters are clearly visible.
As the nearest-neighbour distances are generally smaller for Examples D and E, a smaller
parameter value r = 30 m was applied for these two patterns (Figure 7.2). Six different
values for τ were considered to study the consequences of different extents of clustering.
1000 iterations were performed for each combination of parameters. All other aspects of
the simulation setting remained as in Section 6.1.

To facilitate the comparison between the cluster model and the inhomogeneous Poisson
process model, the results obtained with the latter have been integrated into the figures
although these results have already been shown in Section 6.2. As we can see in Figure 7.3,
the intensity-based construction method for high-risk zones is conservative for Examples
A and B if the pattern is a cluster process instead of an inhomogeneous Poisson process.
In most cases, the mean fraction pout of generated high-risk zones for which at least one
unexploded bomb was located outside was smaller than the α values of 0.4, 0.2 and 0.1.
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(a) Example D
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(b) Example E

Figure 7.2.: Examples of simulated Neyman-Scott processes for r = 30 m and τ = 5.
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Figure 7.3.: Fraction of high-risk zones with at least one exploded bomb outside for different values of the
cluster parameter τ and for the inhomogeneous Poisson process model (“iP”), r = 80 m.

In particular, the numbers are smaller than for the inhomogeneous Poisson point process
investigated in Section 6.2. The larger the value of τ , i.e. the more clustered the pattern,
the smaller the value of pout. The results for Examples D and E are depicted in Figure 7.4.
Again, the mean fraction pout of generated high-risk zones for which at least one unexploded
bomb was located outside was smaller than the α values of 0.4, 0.2 and 0.1. However, pout

is larger than for the inhomogeneous Poisson point process investigated in Section 6.2 if τ
is small.
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Figure 7.4.: Fraction of high-risk zones with at least one exploded bomb outside for different values of the
cluster parameter τ and for the inhomogeneous Poisson process model (“iP”), r = 30 m.

Figures 7.5 and 7.6 illustrate that smaller high-risk zones result as a consequence of larger
τ . For Examples A and E, the high-risk zones were usually larger than in case of an
inhomogeneous Poisson process, whereas they were often smaller for Examples B and D.
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(b) Example B

Figure 7.5.: Area of high-risk zones for q = 0.10 for different values of the cluster parameter τ and for the
inhomogeneous Poisson process model (“iP”), r = 80 m.

In summary, the sensitivity analysis indicates that the intensity-based method can be used
if the bomb crater pattern is clustered. However, the resulting high-risk zones will usually
be too large, so the approach is conservative.
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Figure 7.6.: Area of high-risk zones for q = 0.10 for different values of the cluster parameter τ and for the
inhomogeneous Poisson process model (“iP”), r = 30 m.
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7.2. Fitting cluster models to the bomb crater patterns

For the bootstrap correction introduced in Section 6.3, the inhomogeneous Poisson process
served as the point process model from which patterns were simulated. If the assumption
of an inhomogeneous Poisson process is not appropriate, other point process models can be
used instead. For patterns which show a tendency to clustering, a classical cluster process
such as the Thomas or the Matérn process, whose parameters can be estimated with the
method of minimum contrast using one of the summary functions, is a natural choice.

In this section, these models are studied in more detail than in Section 2.5. Estimation
is explained and the results for Examples A to F are discussed. Finally, the bootstrap
simulation introduced in Section 6.1 is repeated, where the inhomogeneous Poisson point
process is replaced by a Thomas process.

7.2.1. Summary functions for Thomas and Matérn processes

For Thomas and Matérn processes, explicit formulae for Ripley’s K-function and the pair
correlation function can be given. Let κ denote the intensity of the homogeneous Poisson
point process of cluster centres (i.e. the intensity of the parent process). The number of
cluster points per cluster (also called offspring or daughter points) follows a Poisson dis-
tribution with parameter µ. For the Thomas process, the positions of the cluster points
relative to the cluster centres are given by a Gaussian distribution with mean 0 and stan-
dard deviation σ, whereas the cluster points of a Matérn process are uniformly distributed
in a sphere of radius R centered at the cluster centre.

For a Thomas process, the pair correlation function is

g(r) = 1 +
exp

{
− r2

4σ2

}
4πκσ2

and Ripley’s K-function is

K(r) = πr2 +
1−

{
r2

4σ2

}
κ

(see Illian et al. (2008, page 377) for the pair correlation function and Møller and
Waagepetersen (2003, page 62) for both functions).

Analogue expressions, which are however more complicated, can be given for Matérn
processes, see Illian et al. (2008, page 376) and Stoyan (1992) for the pair correlation
function. A formula for Ripley’s K-function is given in the spatstat documentation.

7.2.2. Method of minimum contrast

The basic idea of the method of minimum contrast (also called ‘minimum contrast method’)
is described in Illian et al. (2008, pages 450–452). One chooses a suitable summary charac-
teristic S depending on the unknown parameters θ. The difference between the theoretical
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Sθ for a specific choice of parameters and Ŝ estimated from the given data is minimised
with respect to θ. For functional summary characteristics, a least-squares approach can be
used:

∆(θ) =

∫ s2

s1

|Ŝ(r)− Sθ(r)|βdr

is minimised, where β = 2 is often used. In practice, the integral is approximated by a
sum:

∆(θ) ≈
k∑
i=0

|Ŝ(ρi)− Sθ(ρi)|β · δ,

where ρ0 = s1, ρk = s2, ρi = s1 + iδ and δ = s2−s1
k

for an integer k. Illian et al. (2008)
recommend using the pair correlation function and choosing a positive s1 near the estimated
mean nearest-neighbour distance.

If Sθ is unknown, it can be estimated using a simulation (Diggle, 1978; Diggle and
Gratton, 1984). In spatstat, a modified version with

∆(θ) =

∫ s2

s1

|(Ŝ(r))q − (Sθ(r))
q|βdr

is implemented, where q = 0.25 is recommended following Diggle (2003) and Waagepetersen
(2007).

7.2.3. Application to Examples A to F

Thomas and Matérn cluster processes are fitted to Examples A to F, both with Ripley’s K-
function and the pair correlation function as summary characteristic S. As both functions
are invariant under p-thinning, it is a sensible approach to fit the model based on the bomb
crater patterns to obtain models which are useful for the whole process of bomb craters
and unexploded bombs.

Table 7.1.: Parameter estimates for Thomas model
estimated using K(·) estimated using g(·)

Example κ̂ · ν(W ) σ̂2 µ̂ κ̂ · ν(W ) σ̂2 µ̂

A 4.5 15388 97 4 19912 111
B 3.2 34360 33 3.4 32343 30
C 10.3 24737 133 9.5 27346 145
D 22.4 3359 20 18.5 4653 24
E 2.2 12952 70 2.7 8727 57
F 2.3 47387 751 2.1 52530 817

The estimated parameter values are given in Tables 7.1 and 7.2. The estimates for κ
are multiplied by the area of the observation window to see how many clusters can be
expected. The number of expected clusters is generally low for Examples A, B, E and
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Table 7.2.: Parameter estimates for Matérn cluster model
estimated using K(·) estimated using g(·)

Example κ̂ · ν(W ) R̂ µ̂ κ̂ · ν(W ) R̂ µ̂

A 4.6 235 96 7.1 166 62
B 3.3 341 32 3.8 310 27
C 73 41 19 10.1 300 136
D 22.4 110 20 19.5 123 23
E 2.2 213 69 2 241 77
F 12.5 24 137 2.3 414 758

F. The parameter estimates for both Thomas models are similar, whereas the parameters
of the Matérn models show some peculiarities: Large differences for µ̂ are observed for
Example C, where µ̂ is small for the Matérn model fitted by using the K-function. For
Examples C and F, the expected number of clusters was much larger for the Matérn model
fitted by using the K-function. In what follows, the four types of models are discussed
in more detail. Examples of patterns simulated from the fitted models are shown. The
estimated K-functions, pair correlation functions and empty-space functions of the observed
patterns are compared to those of 100 simulated patterns. In contrast to Section 5.1,
the summary functions of the simulated patterns are not combined to an envelope, but
shown individually. This way, it is easier to get an impression of differences between single
simulations, which is more useful than a formal Monte Carlo test in this context.

Matérn processes fitted by using the K-function

Matérn processes fitted by using the K-function cannot describe the observed patterns in
an appropriate way: Simulations based on the fitted models yielded patterns whose points
were concentrated on only a small fraction of the original area. This problem is especially
severe for Examples A, C and F (Figure 7.8). The only case in which the simulated pattern
resembles the observed pattern is Example D.

The estimated K-function for the observed pattern is compared to the estimated K-
functions of 100 patterns simulated from the model fitted to the data and the theoretical
K-function for this model in Figure 7.7. Results are not shown for all six examples. Instead,
one positive and one negative case is illustrated. For Example D, the observed K-function
and the mean of the simulated K-function are close, whereas the observed K-functions
and the simulated K-function differ very much for Example F. Examples C and E also
represent negative cases, but are not shown here. A similar depiction is given in Figure 7.9
for the pair correlation function. Negative cases in addition to Example C are Examples
D and F. Example A represents the case in which observed and simulated pair correlation
function agree best. As the empty-space function is estimated at discrete points which are
chosen individually for each pattern by the spatstat routine, the mean of the simulated
empty-space functions cannot be computed (Figure 7.10). For all examples except Example
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D, large deviations between the observed and the simulated empty-space functions were
observed.
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(a) Example D
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(b) Example F

Figure 7.7.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated as
a Matérn process (fitted by using the K-function), the dashed lines represent the mean of the estimated
K-functions of the simulated patterns, the dotted lines give the theoretical K-functions for the fitted model.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 7.8.: Simulated examples of Matérn processes fitted by using the K-function.
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Figure 7.9.: Pair correlation function: The solid black lines represent the estimated pair correlation func-
tions of the observed patterns, the grey lines correspond to the estimated pair correlation functions for
patterns which were simulated as a Matérn process (fitted by using the K-function), the dashed lines rep-
resent the mean of the estimated pair correlation functions of the simulated patterns, the dotted lines give
the theoretical pair correlation functions for the fitted model.
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(b) Example D

Figure 7.10.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated as a Matérn process (fitted by using the K-function).
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Matérn processes fitted by using the pair correlation function

The findings for Matérn processes fitted by using the pair correlation function are similar to
those for Matérn processes fitted by using the K-function: Simulations based on the fitted
models yielded patterns whose points were dispersed on a smaller area than the original
patterns. Again, this problem is especially severe for Examples A, C and F (Figure 7.12)
and the only case in which the simulated pattern resembles the observed pattern is Example
D.

Regarding the K-function, a good fit was obtained for Examples C and D, whereas the
deviations were large for Examples A, E and F (Figure 7.11). The pair correlation function
could not be described very well for any of the examples. The best situation was observed
for Example C, whose pair correlation function is depicted in Figure 7.13. A negative case
(Example A) and the only positive case (Example D) in terms of the empty-space function
are shown in Figure 7.14.
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Figure 7.11.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated as a
Matérn process (fitted by using the pair correlation function), the dashed lines represent the mean of the
estimated K-functions of the simulated patterns, the dotted lines give the theoretical K-functions for the
fitted model.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 7.12.: Simulated examples of Matérn processes fitted by using the pair correlation function.
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Figure 7.13.: Pair correlation function: The solid black lines represent the estimated pair correlation
functions of the observed patterns, the grey lines correspond to the estimated pair correlation functions
for patterns which were simulated as a Matérn process (fitted by using the pair correlation function), the
dashed lines represent the mean of the estimated pair correlation functions of the simulated patterns, the
dotted lines give the theoretical pair correlation functions for the fitted model.
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Figure 7.14.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated as a Matérn process (fitted by using the pair correlation function).
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Thomas processes fitted by using the K-function

The fitted Thomas processes describe the observed patterns better than Matérn processes.
As depicted in Figure 7.16, there are nonetheless examples for which simulated patterns
look quite different from the observed patterns, in particular Examples A and C. The
simulated K-functions are close to the observed K-functions for Examples B, C and D.
Deviations were observed for Example A, E and F, the worst of them for Example E (see
Figure 7.15). Regarding the pair correlation function, the largest deviations were observed
for Example F, the best fit was achieved for Example B, which is depicted in Figure 7.17.
Despite substantial deviations such as for Example A, the fit regarding the empty-space
function was improved by far compared to the Matérn models (Figure 7.18).
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Figure 7.15.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated as a
Thomas process (fitted by using the K-function), the dashed lines represent the mean of the estimated
K-functions of the simulated patterns, the dotted lines give the theoretical K-functions for the fitted model.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 7.16.: Simulated examples of Thomas processes fitted by using the K-function.
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Figure 7.17.: Pair correlation function: The solid black lines represent the estimated pair correlation
functions of the observed patterns, the grey lines correspond to the estimated pair correlation functions
for patterns which were simulated as a Thomas process (fitted by using the K-function), the dashed lines
represent the mean of the estimated pair correlation functions of the simulated patterns, the dotted lines
give the theoretical pair correlation functions for the fitted model.
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Figure 7.18.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated as a Thomas process (fitted by using the K-function).
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Thomas processes fitted by using the pair correlation function

The results for Thomas processes fitted by using the pair correlation function are extremely
similar to the results for Thomas processes fitted by using Ripley’s K-function.

As depicted in Figure 7.20, patterns still look quite different from the observed patterns
for Examples A and C. The simulated K-functions are close to the observed K-functions
for Examples B, C and D (Figure 7.19). Regarding the pair correlation function, large
deviations were observed for Examples A, E and F, the best fit was achieved for Example B,
which is depicted in Figure 7.21, and for Example C. The simulated empty-space functions
(Figure 7.22) were similar to those for the Thomas processes fitted by using Ripley’s K-
function.

The fitted Thomas processes generally describe the observed patterns better than Matérn
processes, so they are chosen for the sensitivity analysis. However, as the cluster centres are
distributed randomly, single realisations may look very different compared to the observed
patterns. From a user’s point of view, this is unsatisfactory. A more natural approach
should fix the cluster centres, e.g. by estimating the conditional intensity function given
the cluster centres. This concept will be pursued in the following section.
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Figure 7.19.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated as a
Thomas process (fitted by using the pair correlation function), the dashed lines represent the mean of the
estimated K-functions of the simulated patterns, the dotted lines give the theoretical K-functions for the
fitted model.
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(a) Example A
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure 7.20.: Simulated examples of Thomas processes fitted by using the pair correlation function.
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Figure 7.21.: Pair correlation function: The solid black lines represent the estimated pair correlation
functions of the observed patterns, the grey lines correspond to the estimated pair correlation functions
for patterns which were simulated as a Thomas process (fitted by using the pair correlation function), the
dashed lines represent the mean of the estimated pair correlation functions of the simulated patterns, the
dotted lines give the theoretical pair correlation functions for the fitted model.
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Figure 7.22.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated as a Thomas process (fitted by using the pair correlation function).
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7.2.4. Sensitivity analysis based on Thomas processes

As the fit for the Thomas model was better than for the Matérn model, the inhomogeneous
Poisson point process in the bootstrap simulation introduced in Section 6.1 is replaced by a
Thomas process. Following the recommendation of Illian et al. (2008), the pair correlation
function was chosen as summary characteristic S.

In the bootstrap simulation, full processes are simulated in the first step. The Thomas
model, however, was fitted to the thinned pattern, which must be taken into account in the
simulation. It seems more natural to assume that a certain fraction of the cluster points
of every cluster was thinned than to assume that a certain fraction of clusters was thinned
entirely. Therefore, µ̂ was multiplied by 1

1−q for simulating the full pattern, whereas κ̂
remained unchanged.

Table 7.3.: Result of the bootstrap simulation based on a Thomas process: Fraction pout of generated
high-risk zones for which at least one unexploded bomb was located outside in 1000 iterations; Examples
A, B, D and E, intensity-based method (INT)

Example q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

A pout 0.384 0.312 0.266 0.420 0.356 0.328
B pout 0.272 0.174 0.125 0.328 0.240 0.203
D pout 0.464 0.353 0.292 0.505 0.419 0.376
E pout 0.235 0.156 0.124 0.285 0.216 0.171

As Table 7.3 shows, the fraction pout was smaller than in Section 6.2 for Example B. For
Example A, however, this was only the case when α = 0.4, but not for smaller values of α.
All values of pout for Examples D and E exceeded the values which had been obtained in
Section 6.2. While the fraction pout was nonetheless smaller than α for Example E, it was
too large for Example D in all cases.

These findings indicate that larger high-risk zones would be obtained if the Thomas
process was used instead of an inhomogeneous Poisson point process in the bootstrap
correction procedure, i.e. smaller values for cutoff would result in most cases.

In order to facilitate the interpretation of this result, summary functions obtained for
simulated inhomogeneous Poisson point processes with intensity function λ̂(s) are depicted
in Figures 7.23, 7.24 and 7.25. We can see that the variation between the simulated
patterns is considerably smaller than for Thomas and Matérn processes. The values of
Ripley’s K-function were often slightly too small. For small r, the pair correlation function
of the simulated patterns took smaller values than for the observed patterns. The values of
the empty-space function were usually too large. In general, the fit of the inhomogeneous
Poisson process models seems better than for the Thomas process.
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Figure 7.23.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated as
inhomogeneous Poisson processes, the dashed lines represent the mean of the estimated K-functions of the
simulated patterns.
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Figure 7.24.: Pair correlation function: The solid black lines represent the estimated pair correlation
functions of the observed patterns, the grey lines correspond to the estimated pair correlation functions for
patterns which were simulated as inhomogeneous Poisson processes, the dashed lines represent the mean
of the estimated pair correlation functions of the simulated patterns.
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Figure 7.25.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated as inhomogeneous Poisson processes.
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7.3. Modelling the intensity of clustered patterns by using
a mixture of bivariate normal distributions

7.3.1. Model and estimation of model parameters

An essential disadvantage of the Thomas process from a user’s point of view (in particular,
from the point of view of OFD Niedersachsen) is that the cluster centres are not fixed, so
single realisations of a Thomas process may look very different from the pattern that was
observed. Therefore, a simulation approach is introduced in which the cluster centres are
fixed. The resulting model will have some similarities with the Thomas model.

As a starting point, a larger class of models–which comprises the Thomas process as
a special case–is considered: Shot noise Cox processes are Cox processes whose intensity
function is a realisation of a random field

Z(s) =
∑
j

γjk(cj, s), (7.2)

where k(cj, ·) is a kernel (Møller, 2003). When we think of the shot noise Cox process as
a cluster process, cj is a cluster centre and γj is the intensity of the respective cluster, i.e.
the parameter of the Poisson distribution of the number of cluster points per cluster. For a
Thomas process in the classical definition, k(cj, ·) is a Gaussian kernel and all γj are equal.

Given the vector c of all cluster centres and the vector γ of all cluster intensity param-
eters, the conditional intensity of a shot noise Cox process is

λ(s|c,γ) =
∑
j

γjk(cj, s). (7.3)

This conditional intensity can be modelled by using a finite mixture model. A random
variable X has a finite mixture distribution if its density function takes the form

p(x) =
k∑
i=1

πifi(x), (7.4)

where the mixing weights πj > 0 ∀j and
∑k

i=1 πi = 1 (Titterington et al., 1985). The
component densities fj(·) can take parametric forms with parameters θj.

Fraley and Raftery (2002) use finite mixture models for modelling clustering. Each
component corresponds to a cluster. An implementation for fj(·) multivariate normal is
given in the R package mclust (Fraley et al., 2012). The parameters πj and θj are estimated
by using the EM algorithm (Dempster et al., 1977) for maximum likelihood estimation.
The number of components k is determined by using the Bayesian information criterion
BIC (Schwarz, 1978). BIC could also be used for choosing the complexity of the model in a
more general way, e.g. to decide if a more flexible or component-specific covariance matrix
should be used. However, we restrict the covariance matrix to σ2I to obtain a model which
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is close to the Thomas process, i.e. all clusters are spherical and the variance does not vary
between clusters.
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Figure 7.26.: Classification as mixture of Normal distributions: The asterisks illustrate the cluster centres.
Different plotting symbols were used for the cluster points of each component.

The resulting classification for Examples A to F is shown in Figures 7.26 and 7.27. For most
examples, the number of clusters of the selected model is higher than the expected number
of clusters in the Thomas and Matérn models: 18 clusters were obtained for Example A, 3
for Example B, 12 for Example C, 9 clusters for Example D, 8 for E and 6 clusters for F.

7.3.2. Properties

If we keep in mind that the intensity of a spatial point process and the density are propor-
tional and use a bivariate Gaussian kernel for k(cj, ·) and the density of a bivariate normal
distribution for fj(·) (both of them with covariance σ2I), Equations 7.3 and 7.4 look very
similar.

The main differences between the mixture approach and the Thomas model are as follows:

• The observation window is not taken into account in the mixture approach. The
observations are assumed to be ‘complete’. A Thomas process, on the other hand, is
stationary, so the spatial censoring which results from the restriction of observations
to the window is taken into account by using edge correction methods when the
summary characteristics are estimated.

• In the mixture approach, the optimal model is determined via BIC. Summary char-
acteristics are not considered.
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Figure 7.27.: Classification as mixture of Normal distributions: The asterisks illustrate the cluster centres.
Different plotting symbols were used for the cluster points of each component.

• Compared with the ‘classical’ Thomas model, the mixture approach is more flexible:
The distribution of cluster centres does not correspond to a homogeneous Poisson
process, but the cluster centres are determined using maximum likelihood estimation.
The number of cluster points does not necessarily follow a Poisson distribution. In
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addition to these aspects, it is possible to allow the shape of clusters to vary, e.g.
different covariance matrices can be assigned to each component.

For a further investigation of the properties of the mixture model, 100 patterns were sim-
ulated as inhomogeneous Poisson processes whose intensity functions are the mixture in-
tensity. We obtain a slightly better fit with regard to Ripley’s K-function than with the
Thomas model (Figure 7.28) for models A, E and F. For the pair correlation function, the
fit was similar compared to the fit for the Thomas model (Figure 7.29). The empty-space
function for the patterns simulated based on the mixture models were much closer to the
observed empty-space function than for the Thomas models (Figure 7.30). In general, the
variability of the functions was much smaller. In general, the fit was slightly better than
for the inhomogeneous Poisson point processes with intensity function λ̂(s) estimated by
using the kernel method.
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Figure 7.28.: Ripley’s K-function: The solid black lines represent the estimated K-functions of the observed
patterns, the grey lines correspond to the estimated K-functions for patterns which were simulated using a
mixture of Normal distributions, the dashed lines represent the mean of the estimated K-functions of the
simulated patterns.
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Figure 7.29.: Pair correlation function: The solid black lines represent the estimated pair correlation
functions of the observed patterns, the grey lines correspond to the estimated pair correlation functions
for patterns which were simulated using a mixture of Normal distributions, the dashed lines represent the
mean of the estimated pair correlation functions of the simulated patterns.
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(d) Example D
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(e) Example E
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(f) Example F

Figure 7.30.: Empty-space function: The solid black lines represent the estimated empty-space functions
of the observed patterns, the grey lines correspond to the estimated empty-space functions for patterns
which were simulated using a mixture of Normal distributions.
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7.3.3. Behaviour of the high-risk zones

The inhomogeneous Poisson point process in the bootstrap simulation introduced in Sec-
tion 6.1 was replaced by a mixture model: The mixture intensity of the bomb crater pat-
terns was multiplied by 1

1−q for simulating the full pattern as an inhomogeneous Poisson
process in every iteration.

Table 7.4.: Result of the bootstrap simulation based on the mixture model: Fraction pout of generated
high-risk zones for which at least one unexploded bomb was located outside in 1000 iterations; Examples
A, B, D and E, intensity-based method (INT)

Example q 0.1 0.1 0.1 0.15 0.15 0.15
α 0.4 0.2 0.1 0.4 0.2 0.1

A pout 0.248 0.129 0.077 0.288 0.156 0.102
B pout 0.393 0.256 0.174 0.444 0.303 0.214
D pout 0.140 0.057 0.023 0.129 0.049 0.022
E pout 0.056 0.011 0.004 0.071 0.020 0.010

Table 7.4 shows the behaviour of the high-risk zones. For Examples A, D and E, all
fractions pout were smaller than in Section 6.2. For Example B, this was only the case for
α = 0.4 and for α = 0.2 with q = 0.10. This means that the high-risk zones would usually
be smaller (and α larger) if the mixture model was used for the bootstrap correction.

7.3.4. Constructing high-risk zones based on the mixture intensity

The mixture model yields an estimate for the intensity function. In contrast to the kernel
method, no bandwidth needs to be specified. This rises the question if the intensity-based
method could be improved by using the mixture intensity instead of the kernel estimator.
However, the mixture intensity turns out not to be flexible enough. High-risk zones with
given area were determined and evaluated like in Section 5.3. The fractions pmiss which
are obtained if intensity-based high-risk zones are constructed based on the estimated
mixture intensity are much higher than for the kernel method (Figure 7.31). Moreover, it is
computationally more expensive to use the mixture intensity. Therefore, this modification
cannot be recommended.
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Figure 7.31.: Fraction of unexploded bombs outside the high-risk zone: Comparison for intensity estima-
tion by using the kernel method (KER) and by using a mixture (MIX) (100 iterations)
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8. R package “highriskzone”

The R package highriskzone (Seibold and Mahling, 2012) contains an implementation
of all methods for constructing and evaluating high-risk zones which were introduced in
Chapters 4 and 5 and Sections 6.1 and 7.1. The package is described in detail in Seibold
(2012), where many examples are given. The R package spatstat (Baddeley and Turner,
2005) for the analysis of spatial point patterns served as the main implementational toolbox,
e.g. point patterns were represented in its ppp data format and package functionality was
used to estimate the intensity and to simulate point patterns. Bandwidth selection as
described in Section 4.3.2 was taken from the R package ks (Duong, 2007).

As soon as the package highriskzone has been installed, it can be loaded. It is usually
advisable to increase the number of pixels which is used for pixel images in spatstat and
therefore determines the precision of intensity estimation and all types of high-risk zones.
For more details, please refer to the spatstat documentation.

> library("highriskzone")

> spatstat.options(npixel=1000)

The main functions of the package highriskzone are det_hrz() to determine a high-risk
zone, eval_hrz() to evaluate a single high-risk zone and eval_method() to evaluate a
construction method for high-risk zones. The main functionalities are presented in the
following sections. For more details and further options, please refer to the documentation
of highriskzone.

8.1. Data structure

The spatial point patterns for Examples A and B are included in the package as ppp objects
craterA and craterB.

> data(craterB)

> craterB

planar point pattern: 104 points

window: polygonal boundary

enclosing rectangle: [0, 1961.5682] x [0, 3440.013] units

> plot(craterB)
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craterB
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Figure 8.1.: Result of plot(craterB).

Additionally, the function read_pppdata() enables the user to determine high-risk zones
for his own data. The coordinates of the observed events and of a polygon describing the
border of the observation window can be given as vectors and are converted to a ppp object.
Note that the coordinates of the polygon need to be sorted anti-clockwise.

> ppxcoord <- c(0, 1, -2, -2, 3, -1, 1, 3)

> ppycoord <- c(4, 0, 1, -3, 5, 2, 3, 1)

> winxcoord <- c(-3, -4.5, -3, 0, 4, 6, 5, 2)

> winycoord <- c(5.5, -2, -4.5, -4, -2, 2, 7, 5)

> simpleexample <- read_pppdata(xppp=ppxcoord, yppp=ppycoord,

+ xwin=winxcoord, ywin=winycoord)

> simpleexample

planar point pattern: 8 points

window: polygonal boundary

enclosing rectangle: [-4.5, 6] x [-4.5, 7] units

> plot(simpleexample)
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Figure 8.2.: Result of plot(simpleexample).

Two classes of objects introduced by the package highriskzone are highriskzone and
hrzeval, which result when the functions det_hrz() and eval_hrz() are employed. The
package highriskzone comprises methods to print, plot and summarise such objects. They
are presented in the following section.

8.2. Determining high-risk zones

Intensity-based and quantile-based high-risk zones as defined in Chapter 4, as well as
high-risk zones based on the traditional method, can be determined by using the function
det_hrz(ppdata, type, criterion, cutoff, nxprob). It is also possible to construct
a high-risk zone with given area as described in Section 5.3. The arguments type and
criterion define which of these approaches is employed to determine the high-risk zone.
Table 8.1 shows which approach corresponds to which combination of arguments. Remem-
ber that the traditional and the quantile-based method can be subsumed under ‘distance-
based methods’. The argument type can therefore take the values "dist" or "intens"

and criterion can be "direct", "indirect" or "area".
The meaning of the argument cutoff depends on the values of type and criterion

and is shown in Table 8.2. Note that for type = "dist" and criterion = "direct" the
user does not specify c, the threshold with respect to λ̂Z(s), but a transformation of it, the
threshold with respect to λ̂Y (s).

The argument ppdata defines the ppp object (a spatial point pattern including the
observation window) which is used to determine the high-risk zone. Another important
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Table 8.1.: Approach which is used to determine a high-risk zone for all possible combinations of arguments
type and criterion

type = "dist" type = "intens"

criterion = traditional method intensity-based method
"direct" (Section 4.1) where threshold c

is specified directly
(Section 4.3.3)

criterion = quantile-based method intensity-based method
"indirect" (Section 4.2) where global failure

probability α is specified
(Section 4.3.4)

criterion = distance-based method intensity-based method
"area" where area is specified where area is specified

(Section 5.3) (Section 5.3)

Table 8.2.: Meaning of the argument cutoff for all possible combinations of arguments type and cri-

terion
type = "dist" type = "intens"

criterion = radius r threshold
"direct" cY = 1−q

q
· c

criterion = p to define global failure
"indirect" the quantile probability α
criterion = area of the area of the
"area" high-risk zone high-risk zone

argument of the function det_hrz() is nxprob, the probability of non-explosion or, more
generally, the probability of non-observation q.

The function det_hrz() returns an object of class highriskzone. It contains the high-
risk zone as an object of class owin, the data format which is used for observation windows
in spatstat, and–depending on the value of criterion–additional information such as
the resulting threshold (for criterion = "indirect" and criterion = "area") and the
retrospectively determined values for p and α (for criterion = "area").

A quantile-based high-risk zone with p = 0.99 can be determined as follows:

> hrz1 <- det_hrz(craterB, type = "dist", criterion = "indirect",

+ cutoff = 0.99)

> hrz1

high-risk zone of type dist

criterion: indirect

cutoff: 0.99

> summary(hrz1)
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high-risk zone of type dist

criterion: indirect

cutoff: 0.99

threshold: 268.6246

area of the high-risk zone: 2801749

> plot(hrz1, main="High-risk zone", zonecol="lightgrey",

+ win=craterB$window, plotwindow=TRUE, pattern=craterB,

+ plotpattern=TRUE)

Figure 8.3.: hrz1.

An intensity-based high-risk zone with α = 0.2 and q = 0.10 can be determined as follows:

> hrz2 <- det_hrz(craterB, type = "intens", criterion = "indirect",

+ cutoff = 0.2, nxprob = 0.1)

> hrz2

high-risk zone of type intens

criterion: indirect

cutoff: 0.2

> summary(hrz2)
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high-risk zone of type intens

criterion: indirect

cutoff: 0.2

threshold: 5.798054e-06

estimated covariance matrix of Gaussian kernel: 12268.26 7610.874

7610.874 49206.59

area of the high-risk zone: 2474041

> plot(hrz2, main="High-risk zone", zonecol="lightgrey",

+ win=craterB$window, plotwindow=TRUE, pattern=craterB,

+ plotpattern=TRUE)

Figure 8.4.: hrz2.

A traditional high-risk zone with r = 150 can be determined as follows:

> hrz3 <- det_hrz(craterB, type = "dist", criterion = "direct",

+ cutoff = 150)

> hrz3

high-risk zone of type dist

criterion: direct

cutoff: 150
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> summary(hrz3)

high-risk zone of type dist

criterion: direct

cutoff: 150

threshold: 150

area of the high-risk zone: 2068173

> plot(hrz3, main="High-risk zone", zonecol="lightgrey",

+ win=craterB$window, plotwindow=TRUE, pattern=craterB,

+ plotpattern=TRUE)

Figure 8.5.: hrz3.
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8.3. Evaluating a single high-risk zone

The function eval_hrz(hrz, unobspp, obspp) is used to evaluate a single high-risk zone.
It is invoked by the function eval_method(), but can also be used for illustrative purposes,
e.g. to depict the situation in one iteration of eval_hrz(). Moreover, it can be used to
evaluate a high-risk zone if data on the unobserved events are available.

The three arguments are hrz (an object of class owin representing a high-risk zone),
unobspp (the point pattern of unobserved events) and obspp (the point pattern of observed
events). Usually, unobspp and obspp are simulated from a complete pattern by thinning,
for which the function thin() can be used.

The function eval_hrz() returns an object of class hrzeval, which contains (among
other things) the number and fraction of unobserved events outside the high-risk zone and
the area of the high-risk zone, as well as the subpatterns of unobserved events inside and
outside the high-risk zone. The package comprises a method to plot these subpatterns
together with the high-risk zone and the pattern of observed events.

> thdata <- thin(craterB, nxprob=0.1)

> hrz4 <- det_hrz(thdata$observed, type = "intens",

+ criterion = "indirect", cutoff = 0.6, nxprob = 0.1)

> evaluation <- eval_hrz(hrz = hrz4$zone,

+ unobspp = thdata$unobserved, obspp = thdata$observed)

> evaluation

evaluation of a high-risk zone based on 90 observed events

number of unobserved events: 14

number of unobserved events located outside the high-risk zone: 3

> summary(evaluation)

evaluation of a high-risk zone based on 90 observed events

number of unobserved events: 14

number of unobserved events located outside the high-risk zone: 3

fraction of unobserved events located outside the high-risk zone: 0.2142857

area of the high-risk zone: 1671827
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> plot(evaluation, hrz = hrz4, obspp = thdata$observed,

+ plothrz = TRUE, plotobs = TRUE)

Figure 8.6.: Evaluation of high-risk zone hrz4.

The function which plots the evaluation results is flexible, e.g. plotting symbols can be
specified by the user.

> plot(evaluation, hrz = hrz4, obspp = thdata$observed, plothrz = TRUE,

+ plotobs = TRUE, insidecol = "red", outsidecol = "red",

+ obscol = "blue", insidepch = 19, outsidepch = 4, main = "Evaluation")

> legend(2400, 2456.4061, c("observed", "unobs inside", "unobs outside"),

+ col = c("blue", "red", "red"), yjust=1, pch=c(1, 19, 4), cex=0.8)
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Figure 8.7.: Evaluation of high-risk zone hrz4.

8.4. Evaluating a construction method for high-risk zones

The function eval_method(ppdata, type, criterion, cutoff, nxprob, numit,

simulate) allows to evaluate the behaviour of high-risk zones for one or more construction
methods. It invokes the functions det_hrz() and eval_hrz(). Therefore, the arguments
ppdata, type, criterion, cutoff and nxprob have exactly the same meaning as for
det_hrz(). However, as high-risk zones constructed by applying different approaches
and referring to different values for cutoff (but based on the same data and the same
probability of non-observation) can be evaluated simultaneously, type, criterion and
cutoff can be given as vectors. The argument numit defines the number of iterations to
be performed.

If the argument simulate takes the value "thinning", the evaluation is performed by
thinning the observed pattern as described in Section 5.2. For simulate = "intens",
the simulation procedure based on the estimated intensity (as described in Section 6.1) is
applied. A sensitivity analysis with regard to clustering (Section 7.1) can be performed by
setting simulate = "clintens". In this case, the additional parameter τ is given by the
argument clustering and radiusClust is the radius of the simulated clusters.

The function eval_method() returns a data frame which contains the number and frac-
tion of unobserved events outside the high-risk zone and the area of the high-risk zone
for every iteration, as well as additional information such as the resulting threshold (for
criterion = "indirect" and criterion = "area") and the retrospectively determined
values for p and α (for criterion = "area").
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> set.seed(321)

> evalm <- eval_method(craterB, type = c("dist", "intens"),

+ criterion = c("area", "area"), cutoff = c(2500000, 2500000),

+ nxprob = 0.1, numit = 1000, simulate = "thinning", pbar = FALSE)

> head(evalm)

Iteration Type Criterion Cutoff nxprob threshold

1 1 dist area 2500000 0.1 2.417165e+02

2 1 intens area 2500000 0.1 3.727658e-06

3 2 dist area 2500000 0.1 2.230912e+02

4 2 intens area 2500000 0.1 4.627532e-06

5 3 dist area 2500000 0.1 2.103224e+02

6 3 intens area 2500000 0.1 5.873129e-06

calccutoff covmatrix11 covmatrix12 covmatrix21

1 0.9650292 13816.89 8583.149 8583.149

2 0.1104404 13816.89 8583.149 8583.149

3 0.9400810 12543.24 8108.112 8108.112

4 0.1488846 12543.24 8108.112 8108.112

5 0.9528919 14112.04 11188.562 11188.562

6 0.2182055 14112.04 11188.562 11188.562

covmatrix22 numbermiss numberunobserved missingfrac

1 53190.34 1 13 0.07692308

2 53190.34 1 13 0.07692308

3 53945.32 0 8 0.00000000

4 53945.32 1 8 0.12500000

5 64350.06 0 13 0.00000000

6 64350.06 0 13 0.00000000

arearegion numberobserved

1 2500000 91

2 2499987 91

3 2500000 96

4 2500007 96

5 2500000 91

6 2499987 91
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9. Discussion

9.1. Summary

This thesis is concerned with the construction of high-risk zones for incompletely observed
spatial point processes. The starting point is the application of unexploded bombs. To
construct such high-risk zones, bomb crater patterns derived from aerial pictures are con-
sidered as realisations of spatial point processes. High-risk zones comprising unexploded
bombs with high probability should be as small as possible. In most cases, the probability
of non-explosion is assumed to be constant (Chapter 1).

Six examples of bomb crater point pattern data were investigated using functional sum-
mary characteristics. Edge correction methods were applied. All patterns tend to be
clustered, which may possibly be due to inhomogeneity (Chapter 3).

In addition to the traditional method, which is based on discs of a fixed radius centered
at the events, a quantile-based construction method for high-risk zones, which is a develop-
ment of the traditional method, is presented. A quantile of the nearest-neighbour distance
is used instead of a fixed radius. For the six examples, it makes hardly any difference if
the observed nearest-neighbour distances are considered directly or if edge correction is
applied (Chapter 4).

The intensity-based method is introduced as a new construction method for high-risk
zones. An intensity-based high-risk zone consists of those locations for which the intensity
attains or exceeds a threshold. The threshold can be specified directly or with respect to the
failure probability, which expresses the global risk that not all unobserved events are covered
by the high-risk zone. In the latter case, it is necessary to assume that the underlying point
process model is the inhomogeneous Poisson process. The intensity function is estimated by
using a bivariate Gaussian kernel with unconstrained covariance matrix which is determined
via smooth cross-validation. Edge correction needs to be applied (Chapter 4).

To investigate the applicability of the intensity-based construction method, high-risk
zones were determined for a variety of bomb crater patterns which partly represent very
complex or particular situations. Examples of such high-risk zones have been shown in
Section 4.3, further high-risk zones can be found in Chapters A and D in the Appendix.
High-risk zones for two of the properties which have not been considered in this thesis so
far are depicted in Figure 9.1 to illustrate two further possible constellations.

The intensity-based high-risk zones clearly differ from the high-risk zones which have
been determined up to now by using the traditional method. According to Oberfinanzdi-
rektion Niedersachsen, they have a plausible shape. As mentioned in Mahling et al. (2013),
single observations which are not covered by the high-risk zone (as for Examples B and D
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(a) Example I (b) Example J

Figure 9.1.: High-risk zone obtained with the intensity-based construction method for q = 0.10 and
α = 0.4.

in Figure 4.7) are not regarded as problematic. In general, intensity-based high-risk zones
turned out to be less ragged than quantile-based high-risk zones. This is an advantage of
the method, as the on-site determination of the border of the high-risk zones is laborious.
Insular areas inside a high-risk zone would only be excluded from the high-risk zone if they
are big enough to justify this additional work.

In Chapter 5, a Monte Carlo test based on the K-function showed no evidence against the
assumption of an inhomogeneous Poisson process. However, the results based on the pair
correlation function were different, as the estimated pair correlation function of Example
A exceeds the envelope for small arguments. For Examples C, D and F, the estimated pair
correlation functions are close to the envelope for small arguments of the pair correlation
function. In summary, it seems justified to apply the intensity-based method, but cluster-
ing cannot be ruled out. A simulation study where the observed patterns were taken as
full patterns revealed that the failure probability is usually not kept to very well. The tra-
ditional method cannot be recommended as almost no information contained in the data is
used and the choice of the radius by an expert remains slightly arbitrary. The performance
of intensity-based and quantile-based high-risk zones was compared in another simulation
study where the area of the high-risk zones was fixed. It was comparably good for both
methods. However, the quantile-based high-risk zones tend to be more ragged. Moreover,
the theoretical properties are not convincing: Risk is fixed for each unobserved event sep-
arately, but not globally. The global risk can only be influenced indirectly, but cannot be
chosen arbitrarily small. The shape of the high-risk zones is predetermined by the use of
discs, which means that quantile-based high-risk zones are less flexible and, in particular,
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cannot take into account anisotropy. Moreover, the probability of non-observation is not
taken into account when a quantile-based high-risk zone is determined.

A bootstrap simulation procedure based on the estimated intensity function was proposed
to assess the risk which is associated with a high-risk zone (Chapter 6). It is necessary
to assume that the patterns are realisations of inhomogeneous Poisson processes. As the
global failure probability is not kept to, a bootstrap correction was introduced to find the
necessary parameter values to obtain a high-risk zone which is associated with the desired
risk.

As spatial clustering cannot be ruled out, its consequences on the bootstrap simulation
procedure are investigated in a sensitivity analysis in Chapter 7. In most cases, the fraction
of high-risk zones which did not cover all unexploded bombs was smaller than for the
inhomogeneous Poisson model. Fitting classical cluster models to the observed patterns
via the minimum contrast method did not yield convincing results, especially when Matérn
processes were used as point process model. The results for Thomas processes were better,
even if the empty-space functions showed considerable differences between the observed and
simulated patterns. In a sensitivity analysis based on Thomas processes, the fraction of
high-risk zones which did not cover all unobserved events was larger than for the original
bootstrap simulation in most cases. Compared to the Thomas processes, the fit to the
observed patterns was slightly better if mixtures of bivariate normal distributions were
used to model the intensity. In most cases, the fraction of high-risk zones which did
not cover all unobserved events was smaller than for the original bootstrap simulation.
However, using the mixture intensity to construct high-risk zones cannot be recommended.
The advantage compared to the kernel method is that no bandwidth or covariance matrix
needs to be determined, but the mixture intensity is not flexible enough to be the basis
of the high-risk zone and its determination is computationally more expensive than kernel
methods.

The main methods presented in this thesis are implemented in an R package called
highriskzone. It contains functionalities to determine and evaluate high-risk zones. A
brief introduction is given in Chapter 8.

9.2. Outlook

As demonstrated in Section 6.2, the estimation of the intensity function is a crucial issue
for the success of the intensity-based method. Other approaches to estimate the intensity,
such as the adaptive estimator in the R package sparr (Davies et al., 2011), which also
corrects for edge effect bias, or the estimator proposed by Bernardeau and van de Weygaert
(1996), which is based on the Voronoi tessellation, might help to improve the intensity-
based method in general.

To account for the clustered structure of the bomb crater data, more complicated models
could be used. A major restriction in the choice of models was that even a user with
little statistical knowledge should be able to fit them in an automated procedure and that
no covariates are available. A solution to the latter aspect could be to use constructed
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covariates as proposed by Illian and Rue (2010) and Illian et al. (2012). They fit log-
Gaussian Cox processes and perform a Bayesian analysis by using the integrated nested
Laplace approximation (Rue et al., 2009).

As mentioned in Section 4.1, high-risk zones can be represented as random sets (for the
theory of random sets, see Molchanov, 2005). An investigation of the properties of high-risk
zones as random sets could inspire further developments of the construction methods.

The methods for constructing high-risk zones which were presented in this thesis cannot
be used for regular patterns. Suitable methodology needs to be developed. However,
examples in the literature–as an example on fallen trees in Illian et al. (2008, page 257),
where the k-neighbour graph (see Section 5.5) is applied–indicate that it might be possible
to find out that and where observations of a regular process are missing without determining
high-risk zones as such.

A related problem is the determination of high-risk zones for point processes on linear
networks (Ang et al., 2012). An application example is the assessment of deer-vehicle
collision risk, where the aim is not to find out where unknown collisions have taken place in
the past, but where they are likely to happen in the future. This could help to take measures
to prevent collisions at the places where these measures are most useful. Hothorn et al.
(2012) analysed data on more than 74000 deer-vehicle collisions in Bavaria by aggregating
the data for municipalities. However, as exact coordinates of the collisions are available,
point process models can be applied (Hornung, 2011). As the collisions are in fact located
on roads, these could be regarded as a linear network, which would allow an analysis which
does not refer to entire municipalities or the geographical position in general, but to the
roads. For measures such as fencing and green bridges, the roads are the entity which is
of importance, so the linear network approach might yield useful new insights.

With regard to high-risk zones for unexploded bombs, the main achievements up to
now are that existing methods and the new intensity-based method have been evaluated
and that it is finally possible to perform a risk assessment. Neither the quantile-based
nor the intensity-based construction method have been applied in practice so far, but OFD
Niedersachsen and Mull und Partner are currently working on their adoption. The next step
which needs to be taken is the implementation of a plug-in for a Geographical Information
System (GIS) such as Quantum GIS (Quantum GIS Development Team, 2013) to make all
functionalities implemented in the R package highriskzone available for analysts of aerial
pictures.

While the use of spatial point process methodology is a novel development in the field of
high-risk zones for unexploded bombs, it has a long tradition for other fields of application,
such as forestry, epidemiology and ecology. The methods presented in this thesis may be
of use in these fields, as well. The R package highriskzone facilitates application and
further development of the methods for constructing and evaluating high-risk zones.



Appendix

Some further issues which arose in practical application are discussed. This comprises ex-
tensions such as the development of high-risk zones for incompletely observed bomb crater
patterns or for patterns with a spatially varying probability of non-explosion. Moreover,
the definition of guard regions, the construction of separate high-risk zones for subpatterns
and the consequences of outliers are considered.





A. Incomplete bomb crater patterns

In some of the data examples provided by OFD Niedersachsen, the observation window
comprised water areas (such as rivers or lakes) or forest areas. These areas are referred
to as “restriction areas”, as–like in cities–not all bomb craters in these properties can be
derived from the aerial pictures, so the bomb crater pattern is incomplete. This should be
taken into account when a high-risk zone is determined. In this chapter, possible scenarios
are introduced. The consequences of incompletely observed patterns Y are investigated for
two simulated examples. Finally, high-risk zones accounting for the restriction areas are
determined for two real-data examples.

To keep appellations as clear and simple as possible, the process Y will be identified with
bomb craters and Z with unexploded bombs, although the methods are not restricted to
this special case. For applications in other fields, however, the following considerations are
only relevant if the processes Y and Z are in some way of a different type. Otherwise (i.e.
if the only difference between Y and Z is that Y is observed and Z is unobserved) it does
not make sense to say that the observations of Y are incomplete. A more useful approach
in this situation might be to assume a spatially varying probability of observation as in
Section E.

A.1. Scenarios

If no bomb crater within the restriction area can be derived from the aerial pictures, this
can be represented by an observation probability function which takes the value 0 inside
the restriction area and 1 outside. In this situation, the restriction areas can be taken
into account by modifying the observation window. These modified observation windows
contain holes where no observations of Y could be made.

Another possible scenario, which is mainly relevant for forest areas, is a constant positive
observation probability (e.g. 30 %) inside the restriction area. In this situation, a modified
observation window is a good option for correction if the observation probability is low.
All observations within the restriction area are ignored. For a high observation probability,
in contrast, it is desirable to use the observations from the restriction area. This can be
achieved by weighting all observations with their reciprocal observation probability when
the intensity is estimated. Of course, the observation probability does not have to be
constant inside the restriction area. It may vary continuously, for example one might
divide it by 2 for every unit of distance from the border of the restriction area. Such
an observation probability might be realistic for water areas where the water becomes
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continuously deeper. Another example of a continuously varying observation probability
is a forest area in which the density of the trees varies continuously.

Alternatively, the observation probability can vary discretely. All these scenarios can
be combined and a very flexible function for the observation probability can be assumed.
In practice, however, there is no data concerning the observation probability and one
has to resort to expert knowledge and experience, which is both rough. For this reason,
only the two simplest scenarios (observation probability of 0 % inside the restriction area
and constant positive observation probability inside the restriction area) will be discussed
further.
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A.2. Consequences of incompletely observed bomb crater
patterns for simulated examples

To investigate the consequences of incompletely observed bomb crater patterns, the esti-
mated intensity functions and the resulting high-risk zones were considered on the basis
of two simulated examples for complete patterns as well as for observation probabilities of
75 %, 50 %, 25 % and 0 %. Note that besides observation probability, the term extent of
restriction is used, which denotes 1− observation probability.

The intensity function was estimated without correction, weighted (where the weights are
obtained as reciprocal observation probability) and using a modified observation window,
where the restriction areas are integrated as holes. The estimated intensity functions were
then used to determine high-risk zones. For each setting, 1000 iterations with α = 0.4 and
q = 0.10 were performed. The full patterns of bomb craters and unexploded bombs were
simulated as inhomogeneous Poisson point processes with the specified intensity function
in every iteration. Weighted intensity estimation was used for observation probabilities of
75 %, 50 % and 25 %. For complete patterns, the results would be exactly like without
correction, whereas for an observation probability of 0 %, weighting is not possible. The
only correction which is possible in this situation is the modification of the observation
window. Note that this approach was only used for an observation probability of 0 %,
as the results for positive observation probability would be exactly the same. Holes were
always fully integrated into the high-risk zones.

The intensity function which was used for the first simulated example is depicted in
Figure A.1. The intensity is very high in the centre and decreases quickly towards the east
and west. As Table A.1 shows, α = 0.4 is kept to quite well if the full bomb crater pattern
is used. The fraction pout and the mean of pmiss increase considerably with the extent of
restriction if no correction is applied. The mean area of the high-risk zones decreases.

Figure A.1.: Intensity function used for the first simulated example and border of the restriction area
(dashed line).
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Table A.1.: Mean fraction pmiss of unexploded bombs outside the high-risk zone from 1000 iterations,
fraction pout of generated high-risk zones for which at least one unexploded bomb was located outside and
mean area of the zone; first simulated example, intensity-based method

WITHOUT extent of 0 % 25 % 50 % 75 % 100 %
CORRECTION restriction

mean pmiss 0.1060 0.1218 0.1473 0.1964 0.3243
pout 0.384 0.423 0.491 0.582 0.765
mean area in m2 0.7040 0.6875 0.6640 0.6261 0.5516

WITH extent of 0 % 25 % 50 % 75 % 100 %
CORRECTION restriction

mean pmiss 0.1085 0.1153 0.1403 0.1142
pout 0.390 0.400 0.463 0.411
mean area in m2 0.7061 0.7055 0.6914 0.7115

If we correct for the restrictions, the mean area of the high-risk zones is relatively constant.
The fraction pout and the mean of pmiss increase only slightly. For a restriction of 75 %,
it would be better to use a modified window instead of performing a weighted intensity
estimation.

Figures A.2 and A.3 show the shape of the high-risk zones (more precisely, the relative
frequency that every pixel was part of the high-risk zones in 1000 iterations) and the mean
estimated intensity functions from 1000 iterations. Without correction, the high-risk zones
become slimmer in the restriction area. This can be avoided by weighting, at least for 25 %
and 50 % restriction. If the modified window is used, we can see that the high-risk zones
become slimmer near the border of the hole. This means that the edge correction for the
hole cannot fully compensate the lack of observations in the restrictions area. However,
this phenomenon is not visible for the mean estimated intensity itself in Figure A.3(i).
Apart from this, the results for the estimated intensity functions are very similar to those
for the high-risk zones.
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(a) complete observations, no cor-
rection

(b) 25 % restriction, no correction (c) 25 % restriction, weighting

(d) 50 % restriction, no correction (e) 50 % restriction, weighting (f) 75 % restriction, no correction

(g) 75 % restriction, weighting (h) 100 % restriction, no correc-
tion

(i) 100 % restriction, modified
window

Figure A.2.: Resulting high-risk zones (first simulated example): Relative frequency that every pixel was
part of the high-risk zones in 1000 iterations.



170 A. Incomplete bomb crater patterns

(a) complete observations, no cor-
rection

(b) 25 % restriction, no correction (c) 25 % restriction, weighting

(d) 50 % restriction, no correction (e) 50 % restriction, weighting (f) 75 % restriction, no correction

(g) 75 % restriction, weighting (h) 100 % restriction, no correc-
tion

(i) 100 % restriction, modified
window

Figure A.3.: Mean estimated intensity functions from 1000 iterations (first simulated example).
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Figure A.4.: Intensity function used for the second simulated example and border of the restriction area
(dashed line).

The intensity function which was used for the second simulated example is depicted in
Figure A.4. As Table A.2 shows, pout is much smaller than α = 0.4 if the extent of
restriction is smaller than 100 %. The fraction pout and the mean of pmiss even decrease for
a restriction of 25 % and 50 % if no correction is applied. The mean area of the high-risk
zones changes little. Only for 100 % restriction, both fractions rise considerably and the
mean area of the high-risk zones is smaller than when the complete bomb crater patterns
are used. Figure A.5 underlines that the shape of the high-risk zones hardly changes for
restrictions between 25 % and 75 %. The reason is that–although the estimated intensity
decreases with increasing extent of restriction, as we can see in Figure A.6–the intensity
in the relevant area is so high that the threshold which defines the high-risk zone is even
exceeded for a thinned pattern.

Table A.2.: Mean fraction pmiss of unexploded bombs outside the high-risk zone from 1000 iterations,
fraction pout of generated high-risk zones for which at least one unexploded bomb was located outside and
mean area of the zone; second simulated example, intensity-based method

WITHOUT extent of 0 % 25 % 50 % 75 % 100 %
CORRECTION restriction

mean pmiss 0.00040 0.00033 0.00031 0.00117 0.22430
pout 0.037 0.030 0.029 0.092 1.000
mean area in m2 0.8466 0.8491 0.8475 0.8363 0.6689

WITH extent of 0 % 25 % 50 % 75 % 100 %
CORRECTION restriction

mean Anteil pmiss 0.00034 0.00031 0.00035 0.00050
pout 0.031 0.028 0.031 0.046
mean area in m2 0.8525 0.8561 0.8558 0.8489
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(a) complete observations, no cor-
rection

(b) 25 % restriction, no correction (c) 25 % restriction, weighting

(d) 50 % restriction, no correction (e) 50 % restriction, weighting (f) 75 % restriction, no correction

(g) 75 % restriction, weighting (h) 100 % restriction, no correc-
tion

(i) 100 % restriction, modified
window

Figure A.5.: Resulting high-risk zones (second simulated example): Relative frequency that every pixel
was part of the high-risk zones in 1000 iterations.
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(a) complete observations, no cor-
rection

(b) 25 % restriction, no correction (c) 25 % restriction, weighting

(d) 50 % restriction, no correction (e) 50 % restriction, weighting (f) 75 % restriction, no correction

(g) 75 % restriction, weighting (h) 100 % restriction, no correc-
tion

(i) 100 % restriction, modified
window

Figure A.6.: Mean estimated intensity functions from 1000 iterations (second simulated example).
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A.3. Real-data examples

Both correction methods are now applied to Example F and to an additional example. The
estimated intensity and the resulting high-risk zones for α = 0.4 and q = 0.10 are shown.

Example F
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Figure A.7.: Example F: The dashed line represents the border of the restriction area. Because of its
complex shape, it is additionally shaded. Observations within the restriction area are marked with a cross.

Example F contains some very small areas with an observation probability of 0 %. These are
expanses of water. For the forest areas, which are far larger, OFD Niedersachsen suggested
an observation probability of 30 %. Eight observations are located in the restriction area.
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(a) without correction (b) weighting

(c) modified window

Figure A.8.: Estimated intensity for Example F.

It is difficult to perceive any changes for the estimated intensities (Figure A.8). However,
Figure A.9 shows that the high-risk zones become larger for both correction approaches.
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(a) without correction, α = 0.4 (b) weighting, α = 0.4

(c) modified window, α = 0.4

Figure A.9.: High-risk zones for Example F, q = 0.10.
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Example G

Example G comprises 206 observations in an area of approximately 172 ha. As the obser-
vation probability inside the restriction area is 0 %, it was not possible to correct for this
by performing a weighted estimation of the intensity.
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Figure A.10.: Example G: The dashed line represents the border of the restriction area.

Both the estimated intensity and the high-risk zone change if the observation window is
modified.
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(a) without correction (b) modified window

Figure A.11.: Estimated intensity for Example G.

(a) without correction, α = 0.4 (b) modified window, α = 0.4

Figure A.12.: High-risk zones for Example G, q = 0.10.



B. Definition of guard regions

In practice, data is often not only available for the property itself, but also for a guard
region (or guard area, see Baddeley (1999, page 40)) surrounding the property. The high-
risk zones then only comprise locations within the inner window, which represents the
property, but the complete data can be used for determining the high-risk zone. Although
the intensity is estimated using an edge correction, high-risk zones based on the complete
data differ from high-risk zones for whose determination only the data from the inner
window was used. For Example A (Figure B.1), the high-risk zones for q = 0.10 and

(a) complete data (b) only inner window

Figure B.1.: Intensity-based high-risk zone for q = 0.10, α = 0.2; Example A.

α = 0.2 becomes generally smaller if only data from the inner window is used, as the
edge correction does not sufficiently account for several observations located outside the
property, near the border of the inner window. In the north-eastern corner, however, a
small field is added to the high-risk zone in a region where no observations are located
outside the property. A similar behaviour is observed for Example F (Figure B.2), where
a small field is added in the south-west, whereas a larger part in the north is omitted.

As expenses are incurred if additional aerial pictures need to be procured and analysed
to gather information on bomb craters in the guard area, it is important to assess the
necessary width of the guard region. Therefore, one needs to reflect which additional
observations (or the lack of which observations) in the guard region would affect the shape
of the high-risk zones.
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(a) complete data (b) only inner window

Figure B.2.: Intensity-based high-risk zone for q = 0.10, α = 0.2; Example E.

If the quantile-based method is applied, all observations within the guard region whose
distance from the inner window is not larger than the determined radius are relevant.
Indeed, the radius itself may change with additional observations, so a possible strategy is
to use the maximum nearest-neighbour distance of the observations in the inner window
as width of the guard region.

The required width of the guard region for the intensity-based method is deduced from
the covariance matrix which is used for intensity estimation, as the shape of the high-risk
zone is determined by the estimated intensity. To keep the following deliberations simple,
we will ignore that edge correction is used when the intensity is estimated. The width of
the guard region will at least not become too small if we do so. An observation in the
guard region is relevant if its contribution to the estimated intensity in any location inside
the inner window is large, say at least η. The definition of η will be discussed later on. As
the contribution of observations in the guard area is largest for those locations in the inner
window which are close to the border, it is sufficient to consider the estimated intensity at
the border.

The weight which is attributed to an arbitrary observation x when the intensity at a
certain location s is estimated depends on the covariance matrix of the Gaussian kernel
and is a function of dx = x−s. If an isotropic kernel is used, the situation can be described
in an even simpler form as the weight only depends on the Euclidean distance of x and s.
As explained in Section 4.3.2, an anisotropic kernel is used for the intensity-based method.

OFD Niedersachsen wishes the guard region to have equal width in all directions, so the
maximal distance an observation x with dx = (d1, d2) can have from the border of the
inner window W to be associated with a contribution of η is determined. The value of the
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density function of a bivariate normal distribution with mean 0, standard deviations σ1
and σ2 and correlation ρ

ϕ(dx) =
1

2πσ1σ2
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
d21
σ2
1

+
d22
σ2
2

− 2ρd1d2
σ1σ2

)}
, (B.1)

where σ1, σ2 and ρ are derived from the estimated covariance matrix of the Gaussian kernel,
corresponds to the weight which is attributed to x when the intensity is estimated at the
border of the inner window W , i.e. s ∈ ∂W .

For a fixed value η and a given value of d1, the positive solution (if existent) is

d2 = d1 ·
ρσ2
σ1

+ σ2

√
d21(ρ

2 − 1)

σ2
1

− 2(1− ρ2) · ln(2πσ1σ2
√

1− ρ2 · η), (B.2)

so to maximize the distance of x from the border for fixed η, we can maximize the squared
distance

d21 + d22 = d21 · (1 +
σ2
2

σ2
1

· (2ρ2 − 1))

+ d1 · 2ρ ·
σ2
2

σ1

√
d21 ·

ρ2 − 1

σ2
1

− 2(1− ρ2) · ln(2πσ1σ2
√

1− ρ2 · η)

− 2(1− ρ2) · σ2
2 ln(2πσ1σ2

√
1− ρ2 · η). (B.3)

There are basically two strategies to determine η: The first possible strategy is to specify
the probability mass of the Gaussian kernel which is to be taken into account, i.e. to
demand that ∫

E

ϕ(y)dy = γ,

where E = {dx : ϕ(dx) > η} is the region inside the contour for the value η and γ gives
the desired probability mass, e.g. 95 %. The dashed contours in Figure B.3, which shows
contour lines of the Gaussian kernels which are used for intensity estimation for Examples
A to F, were determined in this way.

The second possible strategy is to derive η from the threshold c which is obtained for
a high-risk zone with given parameters α and q based on the observations in the inner
window only. For η = c, the interpretation is that one single observation inside the guard
region would increase the estimated intensity at the inner border so that the threshold c
is attained even if the estimated intensity in that region was zero before. If we ignore the
edge correction and the fact that the threshold c might change for the pattern comprising
observations from the guard region, this would mean that the high-risk zone would be
enlarged in the region in question.
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However, we need to take into account that the estimated intensity might have been larger
than zero before or that there could be several observation close to each other in the guard
region. For this reason, it is useful to consider η = c

2
and η = c

4
as well to gain a better

understanding.
The resulting widths of the guard regions for both strategies are shown in Table B.1.

Note that a value of 0 means that no guard region would be necessary at all.

Example width of guard region for criterion
probability η = c

mass α = 0.2, α = 0.1, α = 0.2, α = 0.1,
γ = 0.95 q = 0.1 q = 0.1 q = 0.15 q = 0.15

A 263.3 164.7 200.0 187.0 219.4
B 551.3 0 0 0 0
C 256.3 0 0 0 0
D 155.2 0 0 0 0
E 190.1 71.1 114.7 100.1 135.0
F 265.4 148.4 186.4 172.0 209.4

η = c
2

A 207.8 236.7 225.9 253.4
B 0 377.8 0 419.0
C 0 103.7 87.7 125.5
D 0 0 0 54.1
E 115.8 146.7 135.6 163.1
F 195.8 225.9 214.2 245.2

η = c
4

A 243.3 268.5 258.9 283.3
B 396.2 461.5 437.9 495.9
C 134.3 161.1 151.3 176.0
D 65.3 84.2 78.0 92.2
E 147.6 172.9 163.6 187.0
F 233.7 259.5 249.4 276.5

Table B.1.: Width of guard region

Figure B.4 shows the guard regions which result for γ = 0.95. The corresponding contour
line of the Gaussian kernel was added, centered at some locations of the border of the
window (where the original observation window of Examples A to F was interpreted as
inner window). As anisotropic kernels are used, the width of the guard region could be
chosen smaller in some directions, e.g. to the west and to the east for Example A or to the
north and the south for Example F.
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(b) Example B
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(c) Example C
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(d) Example D
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(e) Example E
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(f) Example F

Figure B.3.: Gaussian kernel which is used for intensity estimation: contours (solid lines), contour for
desired weight η with γ = 0.95 (dashed line), corresponding maximal distance (blue line).
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(a) Example A (b) Example B

(c) Example C (d) Example D

(e) Example E (f) Example F

Figure B.4.: Guard regions (grey) and corresponding contours of the Gaussian kernels.



C. Marked point processes

Some of the data examples which were provided by OFD Niedersachsen consist of several
subpatterns which are attributed to different aerial attacks. This is possible for properties
of which aerial pictures are available for different dates, which enables experts to find
out which bomb craters belong to which attack. An example is shown in Figure C.1.
Subpattern 1 comprises 381 events, subpattern 2 consists of 32 bomb craters and pattern
3 of 30 bomb craters. The exact dates are not given because this would facilitate the
identification of the property. In some cases, additional information (such as historical
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Figure C.1.: Example A: Distinction of three separate patterns.

records) may be available from which can be derived that different types of bombs were
used. If these different types of bombs are associated with unequal potential for danger,
it seems appropriate to use different failure probabilities for the subpatterns, which means
that the high-risk zones have to be determined separately for each subpattern. As we will
see, this approach is problematic as the combined high-risk zones become too large.

As no data with the additional information on bomb types are available, the approach of
separate high-risk zones for subpatterns is tested on Example A. Subpatterns 2 and 3 are
combined to ‘pattern 2/3’ to keep the setting simple and obtain subpatterns which are not
too small. In a first step, the high-risk zone obtained for a probability of non-explosion of
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q = 0.10 and a failure probability of α = 0.4 if the two patterns are considered separately
was compared to the high-risk zone which results if the two patterns are considered jointly
(Figure C.2). The darker part of the high-risk zone in Figure C.2(a) corresponds to pattern
1, the lighter part to pattern 2/3, the intersection is shaded in black. The combination is
much larger than the high-risk zone depicted in Figure C.2(b).

(a) considering the two patterns separately (b) considering the two patterns jointly

Figure C.2.: Example A: Intensity-based high-risk zone obtained for a probability of non-explosion of
q = 0.10 and a failure probability of α = 0.4.

For the second step, different values for α were assigned to the two patterns. The resulting
high-risk zones are depicted in Figure C.3. The part of the high-risk zone which corresponds
to the pattern with α = 0.2 is enlarged compared to Figure C.2(a), the part with α = 0.6
is demagnified. The combination of both parts is large.

Finally, the behaviour of the high-risk zones was evaluated in a simulation where the
observed patterns were thinned. Four different values for the failure probability were
considered. The fraction pout was determined separately for the two patterns. It is given
for all sixteen combinations of the failure probability α for the considered pattern and α̃
for the respective other pattern. All values are by far too small, especially for pattern 1
(upper part of the table), where one observes also that the values depend heavily on the
failure probability chosen for pattern 2/3, as the values in the lower rows (α̃ = 0.2 and α̃
= 0.1) are clearly smaller than in the upper rows.

The values for pattern 2/3 are slightly closer to α and the effect of α̃ is smaller. There
is no influence of α̃ if α = 0.1.

In summary, determining separate high-risk zones for subpatterns cannot be recom-
mended, at least not if the patterns are located close to each other, but overlap little.
Instead, it would be better to apply the smallest of the relevant values for α to the entire
pattern.
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(a) High-risk zone with α = 0.2 for pattern 1 und
α = 0.6 for pattern 2/3

(b) High-risk zone with α = 0.6 for pattern 1 und
α = 0.2 for pattern 2/3

Figure C.3.: High-risk zones with different values for α for the two patterns.

Table C.1.: Evaluation results: Fraction pout of high-risk zones with at least one unexploded bomb located
outside (1000 iterations); Example A, intensity-based method, results for pattern 1 (P1) und combination
of patterns 2 and 3 (P2) depending on parameters α for the pattern which is considered and α̃ for the
other pattern

A q 0.1 0.1 0.1 0.1
α 0.6 0.4 0.2 0.1

P1 α̃ = 0.6 pout 0.066 0.014 0.004 0.003
α̃ = 0.4 pout 0.049 0.010 0.001 0.001
α̃ = 0.2 pout 0.035 0.005 0 0
α̃ = 0.1 pout 0.008 0.001 0 0

P2 α̃ = 0.6 pout 0.333 0.261 0.015 0.008
α̃ = 0.4 pout 0.327 0.260 0.015 0.008
α̃ = 0.2 pout 0.324 0.259 0.015 0.008
α̃ = 0.1 pout 0.237 0.219 0.010 0.008
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D. Consequences of outliers

In one of the data examples provided by OFD Niedersachsen, only three of the 120 bomb
craters on an area of approximately 12400000 m2 were located in the southern half of the
observation window, two of them very far away from all other bomb craters. A person
evaluating aerial pictures would classify them as outliers. The pattern is shown in Fig-
ure D.1(a). In Figure D.1(b), the Voronoi tessellation (see Illian et al., 2008, Section 1.8) is
depicted. It underlines that these three points would be classified as outliers from a statis-
tical point of view, as well, as the corresponding Voronoi cells are very large. As depicted
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(a) The solid line represents the border of the ob-
servation window, the three points in the southern
part (marked with crosses) are perceived as out-
liers.
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(b) Voronoi tessellation

Figure D.1.: Example H: Observed bomb craters and Voronoi tessellation.

in Figure D.2, the shape of the high-risk zones is influenced considerably by these outliers.
The consequences of outliers for intensity-based and quantile-based high-risk zones were
investigated on the basis of this Example H. High-risk zones were determined and evalu-
ated for the full pattern and for a reduced pattern without the three outliers. The failure
probability α was set to 0.4, 0.2 and 0.1. To keep the results as comparable as possible,
the 95 %, 97.5 % and 99 % quantile were considered. The probability of non-explosion
was 0.10 or 0.15. For each combination of parameters, 1000 iterations were performed. As
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(a) quantile-based method, full pattern (b) quantile-based method, reduced pat-
tern

(c) intensity-based method, full pattern (d) intensity-based method, reduced pat-
tern

Figure D.2.: High-risk zones constructed by using the quantile-based method (99 % quantile) and intensity-
based method (α = 0.4) for q = 0.10, Example H.

depicted in Figure D.3, the area of the quantile-based high-risk zones generally varies more
than the area of the intensity-based high-risk zones, which makes direct comparison of the
two construction methods difficult. The scatterplots show that the area of the high-risk
zones decreases if the reduced pattern is used instead of the full pattern, especially for
the quantile-based method. The fraction of unexploded bombs outside the zone, which
is generally higher for the quantile-based method, is slightly reduced, especially for the
intensity-based method.

Figure D.4 shows how the variation in terms of the radius obtained for the quantile-based
method is reduced. For high quantiles, the radius was extremely large for some cases if
the full pattern was used. For the reduced pattern, there were still some cases with a large



191

●

●

●●

●
●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●● ●

●

●●●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●● ●●

●

●

●●●

●

●

●

●●

●

●

●

●●●●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●● ●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●●●

●

●●

●

●

●

●

●●●

●

●

●

●
●

● ●●●●

●

● ●

●

●●●

●

●

●

●

●

● ●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●●● ●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●
●

●●

●

●

●

● ●●

●

● ●●

●

●●●

●

●

●

●

●● ● ●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●● ●●●

●

●●●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

● ●●●●●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●

● ●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●

●

● ●

●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●● ●●

●

●●●

●

●●● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

2.0e+06 6.0e+06 1.0e+07

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

area of high−risk zone

fr
ac

tio
n 

of
 u

ne
xp

lo
de

d 
bo

m
bs

 o
ut

si
de

 th
e 

zo
ne

● p=0.950, q=0.10
p=0.950, q=0.15
p=0.975, q=0.10
p=0.975, q=0.15
p=0.990, q=0.10
p=0.990, q=0.15

(a) quantile-based method, full pattern
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(b) quantile-based method, reduced pat-
tern
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(c) intensity-based method, full pattern
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Figure D.3.: Area of the high-risk zone and fraction of simulated unexploded bombs outside the zone for
the quantile-based and the intensity-based method, Example H.

radius, but the radius was much smaller in general. The differences between the results
for the full and the reduced pattern were smaller with regard to the threshold c for the
intensity-based method, as the outliers for the full pattern were not as extreme as in case
of the quantile-based method (Figure D.5). In general, the values of c were larger for the
reduced pattern than for the full pattern.

In summary, we can say that both methods are affected by outliers. For the quantile-
based method, high-risk zones can become extremely large.
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Figure D.4.: Relation between given quantile and resulting radius for the quantile-based method, Example
H.
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Figure D.5.: Relation between given α and resulting threshold c for the intensity-based method, Example
H.



E. Spatially varying probability of
non-explosion

In general, the probability of non-explosion is not exactly known. Among other factors, it
depends on characteristics of the subsoil. Therefore, it may be necessary to generalise the
intensity-based method, which is the only construction method which takes the probability
of non-explosion into account at all.

Instead of a homogeneous probability of non-observation q for every event, a location-
dependent function q(s) is assumed. We can still use λ̂Y (s) to estimate the intensity
function of the process Z:

λ̂Z(s) =
q(s)

1− q(s)
· λ̂Y (s).

Y and Z are still independent inhomogeneous Poisson point processes (if X is assumed to
be an inhomogeneous Poisson point process). As for homogeneous q, the region within the
contours defined by λ̂Z(s) = c forms the high-risk zone.

No data with varying probability of non-observation could be provided. Therefore,
Example A is considered and two simple fictitious functions for the probability of non-
observation are used to illustrate this generalisation of the intensity-based method. Both
functions q(s) and the resulting estimated intensity function for Z are shown in Figure E.1.
The functions q(s) are depicted as images; for image 1, q(s) = 0.05 in the western half of
the window and q(s) = 0.15 in the eastern half, whereas it is vice versa for image 2. The
number of events is 218 in the western half of the observation window and 225 in its eastern
half.

The resulting high-risk zones for α = 0.4 are depicted in Figure E.2, together with
high-risk zones which are obtained for a homogeneous intensity of non-explosion, where
q = 0.05, q = 0.10 and q = 0.15. The high-risk zones based on the varying probability
of non-explosion do not only differ from the high-risk zone with constant q = 0.10, both
halves are also different from the corresponding halves of the high-risk zones for q = 0.05
and q = 0.15, respectively. More specifically, the western half of the high-risk zone in
Figure E.2(d) (image 1) is even smaller than in Figure E.2(a), whereas the eastern part is
even larger than in Figure E.2(c) and vice versa for the high-risk zone based on image 2
(Figure E.2(e)).

For a further investigation of the behaviour, a simulation based on thinning the observed
patterns (as in Section 5.2) was performed. The results are shown in Table E.1. For both
images, the fraction pout is below α for α = 0.4, whereas it exceeds α for smaller values.
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(a) image of probability of non-observation
(image 1)
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(b) estimated intensity function for Z (for
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Figure E.1.: Fictitious examples of varying probability of non-observation and resulting estimated intensity
functions for Z in Example A.

Both pout and the mean fraction pmiss are larger for image 2 compared to image 1, while the
mean area is smaller for small values of α.

A comparison with the results from Section 5.2 reveals that the high-risk zones for images
1 and 2 are smaller than for q = 0.10. The fraction pout for high-risk zones based on image
1 is smaller than for q = 0.10. With regard to image 2, this is only the case for α = 0.4,
but all fractions pout are smaller than for q = 0.15.
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(a) q=0.05 (b) q=0.10 (c) q=0.15

(d) q=0.05 in the west, q=0.15 in
the east (image 1)

(e) q=0.15 in the west, q=0.05 in
the east (image 2)

Figure E.2.: High-risk zones (shaded grey areas) obtained for the intensity-based method with maximal
failure probability of α = 0.4, Example A.

Table E.1.: Results of the simulation: Mean fraction pmiss of unexploded bombs outside the high-risk zone
from 1000 iterations, fraction pout of generated high-risk zones for which at least one unexploded bomb
was located outside and mean area of the zone, Example A, intensity-based method (INT) for varying
probability of non-explosion

A image 1 1 1 2 2 2
α 0.4 0.2 0.1 0.4 0.2 0.1

INT mean pmiss 0.009 0.005 0.004 0.011 0.007 0.006
pout 0.332 0.225 0.190 0.356 0.274 0.219
mean area in m2 2573198 2890718 3115477 2593287 2874754 3075703
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